MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfon Structured version   Visualization version   GIF version

Theorem cfon 9240
Description: The cofinality of any set is an ordinal (although it only makes sense when 𝐴 is an ordinal). (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
cfon (cf‘𝐴) ∈ On

Proof of Theorem cfon
StepHypRef Expression
1 cardcf 9237 . 2 (card‘(cf‘𝐴)) = (cf‘𝐴)
2 cardon 8931 . 2 (card‘(cf‘𝐴)) ∈ On
31, 2eqeltrri 2824 1 (cf‘𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2127  Oncon0 5872  cfv 6037  cardccrd 8922  cfccf 8924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-ord 5875  df-on 5876  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-er 7899  df-en 8110  df-card 8926  df-cf 8928
This theorem is referenced by:  cfslb2n  9253  cfsmolem  9255  cfcoflem  9257  cfcof  9259  cfidm  9260  alephreg  9567  winaon  9673  inawina  9675  winainf  9679  rankcf  9762  tskcard  9766  gruina  9803
  Copyright terms: Public domain W3C validator