![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfle | Structured version Visualization version GIF version |
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfle | ⊢ (cf‘𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflecard 9277 | . . 3 ⊢ (cf‘𝐴) ⊆ (card‘𝐴) | |
2 | cardonle 8983 | . . 3 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
3 | 1, 2 | syl5ss 3763 | . 2 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
4 | cff 9272 | . . . . . 6 ⊢ cf:On⟶On | |
5 | 4 | fdmi 6192 | . . . . 5 ⊢ dom cf = On |
6 | 5 | eleq2i 2842 | . . . 4 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
7 | ndmfv 6359 | . . . 4 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
8 | 6, 7 | sylnbir 320 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
9 | 0ss 4116 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
10 | 8, 9 | syl6eqss 3804 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
11 | 3, 10 | pm2.61i 176 | 1 ⊢ (cf‘𝐴) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ∅c0 4063 dom cdm 5249 Oncon0 5866 ‘cfv 6031 cardccrd 8961 cfccf 8963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-ord 5869 df-on 5870 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-en 8110 df-card 8965 df-cf 8967 |
This theorem is referenced by: cfom 9288 cfidm 9299 alephreg 9606 winafp 9721 tskcard 9805 gruina 9842 |
Copyright terms: Public domain | W3C validator |