MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinfil Structured version   Visualization version   GIF version

Theorem cfinfil 21744
Description: Relative complements of the finite parts of an infinite set is a filter. When 𝐴 = ℕ the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinfil ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cfinfil
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3755 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
21eleq1d 2715 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
32elrab 3396 . . . 4 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦) ∈ Fin))
4 selpw 4198 . . . . 5 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
54anbi1i 731 . . . 4 ((𝑦 ∈ 𝒫 𝑋 ∧ (𝐴𝑦) ∈ Fin) ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin))
63, 5bitri 264 . . 3 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin))
76a1i 11 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ↔ (𝑦𝑋 ∧ (𝐴𝑦) ∈ Fin)))
8 elex 3243 . . 3 (𝑋𝑉𝑋 ∈ V)
983ad2ant1 1102 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → 𝑋 ∈ V)
10 ssdif0 3975 . . . . 5 (𝐴𝑋 ↔ (𝐴𝑋) = ∅)
11 0fin 8229 . . . . . 6 ∅ ∈ Fin
12 eleq1 2718 . . . . . 6 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ∈ Fin ↔ ∅ ∈ Fin))
1311, 12mpbiri 248 . . . . 5 ((𝐴𝑋) = ∅ → (𝐴𝑋) ∈ Fin)
1410, 13sylbi 207 . . . 4 (𝐴𝑋 → (𝐴𝑋) ∈ Fin)
15 difeq2 3755 . . . . . . 7 (𝑦 = 𝑋 → (𝐴𝑦) = (𝐴𝑋))
1615eleq1d 2715 . . . . . 6 (𝑦 = 𝑋 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑋) ∈ Fin))
1716sbcieg 3501 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑋) ∈ Fin))
1817biimpar 501 . . . 4 ((𝑋𝑉 ∧ (𝐴𝑋) ∈ Fin) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
1914, 18sylan2 490 . . 3 ((𝑋𝑉𝐴𝑋) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
20193adant3 1101 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → [𝑋 / 𝑦](𝐴𝑦) ∈ Fin)
21 0ex 4823 . . . . . 6 ∅ ∈ V
22 difeq2 3755 . . . . . . 7 (𝑦 = ∅ → (𝐴𝑦) = (𝐴 ∖ ∅))
2322eleq1d 2715 . . . . . 6 (𝑦 = ∅ → ((𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin))
2421, 23sbcie 3503 . . . . 5 ([∅ / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈ Fin)
25 dif0 3983 . . . . . 6 (𝐴 ∖ ∅) = 𝐴
2625eleq1i 2721 . . . . 5 ((𝐴 ∖ ∅) ∈ Fin ↔ 𝐴 ∈ Fin)
2724, 26sylbb 209 . . . 4 ([∅ / 𝑦](𝐴𝑦) ∈ Fin → 𝐴 ∈ Fin)
2827con3i 150 . . 3 𝐴 ∈ Fin → ¬ [∅ / 𝑦](𝐴𝑦) ∈ Fin)
29283ad2ant3 1104 . 2 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → ¬ [∅ / 𝑦](𝐴𝑦) ∈ Fin)
30 sscon 3777 . . . . 5 (𝑤𝑧 → (𝐴𝑧) ⊆ (𝐴𝑤))
31 ssfi 8221 . . . . . 6 (((𝐴𝑤) ∈ Fin ∧ (𝐴𝑧) ⊆ (𝐴𝑤)) → (𝐴𝑧) ∈ Fin)
3231expcom 450 . . . . 5 ((𝐴𝑧) ⊆ (𝐴𝑤) → ((𝐴𝑤) ∈ Fin → (𝐴𝑧) ∈ Fin))
3330, 32syl 17 . . . 4 (𝑤𝑧 → ((𝐴𝑤) ∈ Fin → (𝐴𝑧) ∈ Fin))
34 vex 3234 . . . . 5 𝑤 ∈ V
35 difeq2 3755 . . . . . 6 (𝑦 = 𝑤 → (𝐴𝑦) = (𝐴𝑤))
3635eleq1d 2715 . . . . 5 (𝑦 = 𝑤 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑤) ∈ Fin))
3734, 36sbcie 3503 . . . 4 ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑤) ∈ Fin)
38 vex 3234 . . . . 5 𝑧 ∈ V
39 difeq2 3755 . . . . . 6 (𝑦 = 𝑧 → (𝐴𝑦) = (𝐴𝑧))
4039eleq1d 2715 . . . . 5 (𝑦 = 𝑧 → ((𝐴𝑦) ∈ Fin ↔ (𝐴𝑧) ∈ Fin))
4138, 40sbcie 3503 . . . 4 ([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴𝑧) ∈ Fin)
4233, 37, 413imtr4g 285 . . 3 (𝑤𝑧 → ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴𝑦) ∈ Fin))
43423ad2ant3 1104 . 2 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑧) → ([𝑤 / 𝑦](𝐴𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴𝑦) ∈ Fin))
44 difindi 3914 . . . . 5 (𝐴 ∖ (𝑧𝑤)) = ((𝐴𝑧) ∪ (𝐴𝑤))
45 unfi 8268 . . . . 5 (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → ((𝐴𝑧) ∪ (𝐴𝑤)) ∈ Fin)
4644, 45syl5eqel 2734 . . . 4 (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → (𝐴 ∖ (𝑧𝑤)) ∈ Fin)
4746a1i 11 . . 3 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑋) → (((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin) → (𝐴 ∖ (𝑧𝑤)) ∈ Fin))
4841, 37anbi12i 733 . . 3 (([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴𝑦) ∈ Fin) ↔ ((𝐴𝑧) ∈ Fin ∧ (𝐴𝑤) ∈ Fin))
4938inex1 4832 . . . 4 (𝑧𝑤) ∈ V
50 difeq2 3755 . . . . 5 (𝑦 = (𝑧𝑤) → (𝐴𝑦) = (𝐴 ∖ (𝑧𝑤)))
5150eleq1d 2715 . . . 4 (𝑦 = (𝑧𝑤) → ((𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧𝑤)) ∈ Fin))
5249, 51sbcie 3503 . . 3 ([(𝑧𝑤) / 𝑦](𝐴𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧𝑤)) ∈ Fin)
5347, 48, 523imtr4g 285 . 2 (((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧𝑋𝑤𝑋) → (([𝑧 / 𝑦](𝐴𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴𝑦) ∈ Fin) → [(𝑧𝑤) / 𝑦](𝐴𝑦) ∈ Fin))
547, 9, 20, 29, 43, 53isfild 21709 1 ((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  [wsbc 3468  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  cfv 5926  Fincfn 7997  Filcfil 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fbas 19791  df-fil 21697
This theorem is referenced by:  ufinffr  21780
  Copyright terms: Public domain W3C validator