Step | Hyp | Ref
| Expression |
1 | | trust 22254 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴)) |
2 | | iscfilu 22313 |
. . . . . 6
⊢ ((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴))) ↔ (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢))) |
3 | 2 | biimpa 502 |
. . . . 5
⊢ (((𝑈 ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢)) |
4 | 1, 3 | stoic3 1850 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝐹 ∈ (fBas‘𝐴) ∧ ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢)) |
5 | 4 | simpld 477 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝐴)) |
6 | | fbsspw 21857 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝐴) → 𝐹 ⊆ 𝒫 𝐴) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝐴) |
8 | | simp2 1132 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐴 ⊆ 𝑋) |
9 | | sspwb 5066 |
. . . . 5
⊢ (𝐴 ⊆ 𝑋 ↔ 𝒫 𝐴 ⊆ 𝒫 𝑋) |
10 | 8, 9 | sylib 208 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝒫 𝐴 ⊆ 𝒫 𝑋) |
11 | 7, 10 | sstrd 3754 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ⊆ 𝒫 𝑋) |
12 | | simp1 1131 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑈 ∈ (UnifOn‘𝑋)) |
13 | 12 | elfvexd 6384 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝑋 ∈ V) |
14 | | fbasweak 21890 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝐴) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V) → 𝐹 ∈ (fBas‘𝑋)) |
15 | 5, 11, 13, 14 | syl3anc 1477 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (fBas‘𝑋)) |
16 | | sseq2 3768 |
. . . . . 6
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → ((𝑎 × 𝑎) ⊆ 𝑢 ↔ (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
17 | 16 | rexbidv 3190 |
. . . . 5
⊢ (𝑢 = (𝑣 ∩ (𝐴 × 𝐴)) → (∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢 ↔ ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)))) |
18 | 4 | simprd 482 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢) |
19 | 18 | adantr 472 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → ∀𝑢 ∈ (𝑈 ↾t (𝐴 × 𝐴))∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑢) |
20 | 12 | adantr 472 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝑈 ∈ (UnifOn‘𝑋)) |
21 | 13 | adantr 472 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝑋 ∈ V) |
22 | 8 | adantr 472 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝐴 ⊆ 𝑋) |
23 | 21, 22 | ssexd 4957 |
. . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝐴 ∈ V) |
24 | | xpexg 7126 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ∈ V) |
25 | 23, 23, 24 | syl2anc 696 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → (𝐴 × 𝐴) ∈ V) |
26 | | simpr 479 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑈) |
27 | | elrestr 16311 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑣 ∈ 𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
28 | 20, 25, 26, 27 | syl3anc 1477 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∩ (𝐴 × 𝐴)) ∈ (𝑈 ↾t (𝐴 × 𝐴))) |
29 | 17, 19, 28 | rspcdva 3455 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴))) |
30 | | inss1 3976 |
. . . . . 6
⊢ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣 |
31 | | sstr 3752 |
. . . . . 6
⊢ (((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) ∧ (𝑣 ∩ (𝐴 × 𝐴)) ⊆ 𝑣) → (𝑎 × 𝑎) ⊆ 𝑣) |
32 | 30, 31 | mpan2 709 |
. . . . 5
⊢ ((𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → (𝑎 × 𝑎) ⊆ 𝑣) |
33 | 32 | reximi 3149 |
. . . 4
⊢
(∃𝑎 ∈
𝐹 (𝑎 × 𝑎) ⊆ (𝑣 ∩ (𝐴 × 𝐴)) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
34 | 29, 33 | syl 17 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) ∧ 𝑣 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
35 | 34 | ralrimiva 3104 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
36 | | iscfilu 22313 |
. . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) |
37 | 36 | 3ad2ant1 1128 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) |
38 | 15, 35, 37 | mpbir2and 995 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu‘𝑈)) |