Step | Hyp | Ref
| Expression |
1 | | metust.1 |
. . . . 5
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
2 | 1 | metust 22564 |
. . . 4
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋)) |
3 | | cfilufbas 22294 |
. . . 4
⊢ ((((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → 𝐶 ∈ (fBas‘𝑋)) |
4 | 2, 3 | sylan 489 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → 𝐶 ∈ (fBas‘𝑋)) |
5 | | simpllr 817 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋)) |
6 | | psmetf 22312 |
. . . . . 6
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
7 | | ffun 6209 |
. . . . . 6
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
8 | 5, 6, 7 | 3syl 18 |
. . . . 5
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → Fun 𝐷) |
9 | 2 | ad2antrr 764 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋)) |
10 | | simplr 809 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
(CauFilu‘((𝑋 × 𝑋)filGen𝐹))) |
11 | 1 | metustfbas 22563 |
. . . . . . . 8
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋))) |
12 | 11 | ad2antrr 764 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋))) |
13 | | cnvimass 5643 |
. . . . . . . 8
⊢ (◡𝐷 “ (0[,)𝑥)) ⊆ dom 𝐷 |
14 | | fdm 6212 |
. . . . . . . . 9
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
15 | 5, 6, 14 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋)) |
16 | 13, 15 | syl5sseq 3794 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋)) |
17 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
18 | 17 | rphalfcld 12077 |
. . . . . . . . . 10
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈
ℝ+) |
19 | | eqidd 2761 |
. . . . . . . . . 10
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)(𝑥 / 2)))) |
20 | | oveq2 6821 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑥 / 2) → (0[,)𝑎) = (0[,)(𝑥 / 2))) |
21 | 20 | imaeq2d 5624 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 / 2) → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)(𝑥 / 2)))) |
22 | 21 | eqeq2d 2770 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 / 2) → ((◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)𝑎)) ↔ (◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)(𝑥 / 2))))) |
23 | 22 | rspcev 3449 |
. . . . . . . . . 10
⊢ (((𝑥 / 2) ∈ ℝ+
∧ (◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)(𝑥 / 2)))) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)𝑎))) |
24 | 18, 19, 23 | syl2anc 696 |
. . . . . . . . 9
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) →
∃𝑎 ∈
ℝ+ (◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)𝑎))) |
25 | 1 | metustel 22556 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)𝑎)))) |
26 | 25 | biimpar 503 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑎 ∈ ℝ+
(◡𝐷 “ (0[,)(𝑥 / 2))) = (◡𝐷 “ (0[,)𝑎))) → (◡𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹) |
27 | 5, 24, 26 | syl2anc 696 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (◡𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹) |
28 | | 0xr 10278 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
29 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 0 ∈ ℝ*) |
30 | | rpxr 12033 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ*) |
31 | | 0le0 11302 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
32 | 31 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ 0) |
33 | | rpre 12032 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
34 | 33 | rehalfcld 11471 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ) |
35 | | rphalflt 12053 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) < 𝑥) |
36 | 34, 33, 35 | ltled 10377 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ≤ 𝑥) |
37 | | icossico 12436 |
. . . . . . . . . 10
⊢ (((0
∈ ℝ* ∧ 𝑥 ∈ ℝ*) ∧ (0 ≤ 0
∧ (𝑥 / 2) ≤ 𝑥)) → (0[,)(𝑥 / 2)) ⊆ (0[,)𝑥)) |
38 | 29, 30, 32, 36, 37 | syl22anc 1478 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (0[,)(𝑥 / 2))
⊆ (0[,)𝑥)) |
39 | | imass2 5659 |
. . . . . . . . 9
⊢
((0[,)(𝑥 / 2))
⊆ (0[,)𝑥) →
(◡𝐷 “ (0[,)(𝑥 / 2))) ⊆ (◡𝐷 “ (0[,)𝑥))) |
40 | 17, 38, 39 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (◡𝐷 “ (0[,)(𝑥 / 2))) ⊆ (◡𝐷 “ (0[,)𝑥))) |
41 | | sseq1 3767 |
. . . . . . . . 9
⊢ (𝑤 = (◡𝐷 “ (0[,)(𝑥 / 2))) → (𝑤 ⊆ (◡𝐷 “ (0[,)𝑥)) ↔ (◡𝐷 “ (0[,)(𝑥 / 2))) ⊆ (◡𝐷 “ (0[,)𝑥)))) |
42 | 41 | rspcev 3449 |
. . . . . . . 8
⊢ (((◡𝐷 “ (0[,)(𝑥 / 2))) ∈ 𝐹 ∧ (◡𝐷 “ (0[,)(𝑥 / 2))) ⊆ (◡𝐷 “ (0[,)𝑥))) → ∃𝑤 ∈ 𝐹 𝑤 ⊆ (◡𝐷 “ (0[,)𝑥))) |
43 | 27, 40, 42 | syl2anc 696 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) →
∃𝑤 ∈ 𝐹 𝑤 ⊆ (◡𝐷 “ (0[,)𝑥))) |
44 | | elfg 21876 |
. . . . . . . 8
⊢ (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((◡𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ ((◡𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ 𝐹 𝑤 ⊆ (◡𝐷 “ (0[,)𝑥))))) |
45 | 44 | biimpar 503 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ ((◡𝐷 “ (0[,)𝑥)) ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ 𝐹 𝑤 ⊆ (◡𝐷 “ (0[,)𝑥)))) → (◡𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
46 | 12, 16, 43, 45 | syl12anc 1475 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹)) |
47 | | cfiluexsm 22295 |
. . . . . 6
⊢ ((((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ∧ (◡𝐷 “ (0[,)𝑥)) ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑥))) |
48 | 9, 10, 46, 47 | syl3anc 1477 |
. . . . 5
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑥))) |
49 | | funimass2 6133 |
. . . . . . 7
⊢ ((Fun
𝐷 ∧ (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑥))) → (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
50 | 49 | ex 449 |
. . . . . 6
⊢ (Fun
𝐷 → ((𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑥)) → (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
51 | 50 | reximdv 3154 |
. . . . 5
⊢ (Fun
𝐷 → (∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑥)) → ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
52 | 8, 48, 51 | sylc 65 |
. . . 4
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
53 | 52 | ralrimiva 3104 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
54 | 4, 53 | jca 555 |
. 2
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) → (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
55 | | simprl 811 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝐶 ∈ (fBas‘𝑋)) |
56 | | oveq2 6821 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (0[,)𝑥) = (0[,)𝑎)) |
57 | 56 | sseq2d 3774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎))) |
58 | 57 | rexbidv 3190 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎))) |
59 | | simp-4r 827 |
. . . . . . . . 9
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
60 | 59 | simprd 482 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
61 | | simplr 809 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → 𝑎 ∈ ℝ+) |
62 | 58, 60, 61 | rspcdva 3455 |
. . . . . . 7
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎)) |
63 | | nfv 1992 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) |
64 | | nfv 1992 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝐶 ∈ (fBas‘𝑋) |
65 | | nfcv 2902 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦ℝ+ |
66 | | nfre1 3143 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
67 | 65, 66 | nfral 3083 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) |
68 | 64, 67 | nfan 1977 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
69 | 63, 68 | nfan 1977 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
70 | | nfv 1992 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) |
71 | 69, 70 | nfan 1977 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) |
72 | | nfv 1992 |
. . . . . . . . . 10
⊢
Ⅎ𝑦 𝑎 ∈
ℝ+ |
73 | 71, 72 | nfan 1977 |
. . . . . . . . 9
⊢
Ⅎ𝑦((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) |
74 | | nfv 1992 |
. . . . . . . . 9
⊢
Ⅎ𝑦(◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣 |
75 | 73, 74 | nfan 1977 |
. . . . . . . 8
⊢
Ⅎ𝑦(((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) |
76 | 55 | ad4antr 771 |
. . . . . . . . . . . 12
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦 ∈ 𝐶) → 𝐶 ∈ (fBas‘𝑋)) |
77 | | fbelss 21838 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ 𝑋) |
78 | 76, 77 | sylancom 704 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦 ∈ 𝐶) → 𝑦 ⊆ 𝑋) |
79 | | xpss12 5281 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑋) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋)) |
80 | 78, 78, 79 | syl2anc 696 |
. . . . . . . . . 10
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦 ∈ 𝐶) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋)) |
81 | | simp-6r 835 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦 ∈ 𝐶) → 𝐷 ∈ (PsMet‘𝑋)) |
82 | 81, 6, 14 | 3syl 18 |
. . . . . . . . . 10
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦 ∈ 𝐶) → dom 𝐷 = (𝑋 × 𝑋)) |
83 | 80, 82 | sseqtr4d 3783 |
. . . . . . . . 9
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ∧ 𝑦 ∈ 𝐶) → (𝑦 × 𝑦) ⊆ dom 𝐷) |
84 | 83 | ex 449 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝑦 ∈ 𝐶 → (𝑦 × 𝑦) ⊆ dom 𝐷)) |
85 | 75, 84 | ralrimi 3095 |
. . . . . . 7
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∀𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) |
86 | | r19.29r 3211 |
. . . . . . . 8
⊢
((∃𝑦 ∈
𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ ∀𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦 ∈ 𝐶 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷)) |
87 | | sseqin2 3960 |
. . . . . . . . . . . . 13
⊢ ((𝑦 × 𝑦) ⊆ dom 𝐷 ↔ (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦)) |
88 | 87 | biimpi 206 |
. . . . . . . . . . . 12
⊢ ((𝑦 × 𝑦) ⊆ dom 𝐷 → (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦)) |
89 | 88 | adantl 473 |
. . . . . . . . . . 11
⊢ (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (dom 𝐷 ∩ (𝑦 × 𝑦)) = (𝑦 × 𝑦)) |
90 | | dminss 5705 |
. . . . . . . . . . 11
⊢ (dom
𝐷 ∩ (𝑦 × 𝑦)) ⊆ (◡𝐷 “ (𝐷 “ (𝑦 × 𝑦))) |
91 | 89, 90 | syl6eqssr 3797 |
. . . . . . . . . 10
⊢ (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝑦 × 𝑦) ⊆ (◡𝐷 “ (𝐷 “ (𝑦 × 𝑦)))) |
92 | | imass2 5659 |
. . . . . . . . . . 11
⊢ ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) → (◡𝐷 “ (𝐷 “ (𝑦 × 𝑦))) ⊆ (◡𝐷 “ (0[,)𝑎))) |
93 | 92 | adantr 472 |
. . . . . . . . . 10
⊢ (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (◡𝐷 “ (𝐷 “ (𝑦 × 𝑦))) ⊆ (◡𝐷 “ (0[,)𝑎))) |
94 | 91, 93 | sstrd 3754 |
. . . . . . . . 9
⊢ (((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎))) |
95 | 94 | reximi 3149 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐶 ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎))) |
96 | 86, 95 | syl 17 |
. . . . . . 7
⊢
((∃𝑦 ∈
𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑎) ∧ ∀𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ dom 𝐷) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎))) |
97 | 62, 85, 96 | syl2anc 696 |
. . . . . 6
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎))) |
98 | | r19.41v 3227 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐶 ((𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎)) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) ↔ (∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎)) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣)) |
99 | | sstr 3752 |
. . . . . . . 8
⊢ (((𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎)) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → (𝑦 × 𝑦) ⊆ 𝑣) |
100 | 99 | reximi 3149 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐶 ((𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎)) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣) |
101 | 98, 100 | sylbir 225 |
. . . . . 6
⊢
((∃𝑦 ∈
𝐶 (𝑦 × 𝑦) ⊆ (◡𝐷 “ (0[,)𝑎)) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣) |
102 | 97, 101 | sylancom 704 |
. . . . 5
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑎 ∈ ℝ+) ∧ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣) |
103 | | simp-5r 831 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝐹) ∧ 𝑤 ⊆ 𝑣) → 𝐷 ∈ (PsMet‘𝑋)) |
104 | | simplr 809 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝐹) ∧ 𝑤 ⊆ 𝑣) → 𝑤 ∈ 𝐹) |
105 | 1 | metustel 22556 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑤 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎)))) |
106 | 105 | biimpa 502 |
. . . . . . . 8
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑤 ∈ 𝐹) → ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
107 | 103, 104,
106 | syl2anc 696 |
. . . . . . 7
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝐹) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎))) |
108 | | r19.41v 3227 |
. . . . . . . 8
⊢
(∃𝑎 ∈
ℝ+ (𝑤 =
(◡𝐷 “ (0[,)𝑎)) ∧ 𝑤 ⊆ 𝑣) ↔ (∃𝑎 ∈ ℝ+ 𝑤 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝑤 ⊆ 𝑣)) |
109 | | sseq1 3767 |
. . . . . . . . . 10
⊢ (𝑤 = (◡𝐷 “ (0[,)𝑎)) → (𝑤 ⊆ 𝑣 ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣)) |
110 | 109 | biimpa 502 |
. . . . . . . . 9
⊢ ((𝑤 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝑤 ⊆ 𝑣) → (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) |
111 | 110 | reximi 3149 |
. . . . . . . 8
⊢
(∃𝑎 ∈
ℝ+ (𝑤 =
(◡𝐷 “ (0[,)𝑎)) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) |
112 | 108, 111 | sylbir 225 |
. . . . . . 7
⊢
((∃𝑎 ∈
ℝ+ 𝑤 =
(◡𝐷 “ (0[,)𝑎)) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) |
113 | 107, 112 | sylancom 704 |
. . . . . 6
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
(𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝐹) ∧ 𝑤 ⊆ 𝑣) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) |
114 | 11 | ad2antrr 764 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋))) |
115 | | elfg 21876 |
. . . . . . . . 9
⊢ (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣))) |
116 | 115 | biimpa 502 |
. . . . . . . 8
⊢ ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣)) |
117 | 114, 116 | sylancom 704 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣)) |
118 | 117 | simprd 482 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ 𝐹 𝑤 ⊆ 𝑣) |
119 | 113, 118 | r19.29a 3216 |
. . . . 5
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ⊆ 𝑣) |
120 | 102, 119 | r19.29a 3216 |
. . . 4
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣) |
121 | 120 | ralrimiva 3104 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣) |
122 | 2 | adantr 472 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋)) |
123 | | iscfilu 22293 |
. . . 4
⊢ (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣))) |
124 | 122, 123 | syl 17 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)∃𝑦 ∈ 𝐶 (𝑦 × 𝑦) ⊆ 𝑣))) |
125 | 55, 121, 124 | mpbir2and 995 |
. 2
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) → 𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹))) |
126 | 54, 125 | impbida 913 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐶 ∈ (CauFilu‘((𝑋 × 𝑋)filGen𝐹)) ↔ (𝐶 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐶 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) |