MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilres Structured version   Visualization version   GIF version

Theorem cfilres 23294
Description: Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))

Proof of Theorem cfilres
Dummy variables 𝑢 𝑠 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1132 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (Fil‘𝑋))
2 filfbas 21853 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
31, 2syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐹 ∈ (fBas‘𝑋))
4 simp3 1133 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝐹)
5 fbncp 21844 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
63, 4, 5syl2anc 696 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ¬ (𝑋𝑌) ∈ 𝐹)
7 filelss 21857 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
873adant1 1125 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝑌𝑋)
9 trfil3 21893 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝑋) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
101, 8, 9syl2anc 696 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (Fil‘𝑌) ↔ ¬ (𝑋𝑌) ∈ 𝐹))
116, 10mpbird 247 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
1211adantr 472 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹t 𝑌) ∈ (Fil‘𝑌))
13 cfili 23266 . . . . . . 7 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑥 ∈ ℝ+) → ∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥)
1413adantll 752 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥)
15 simpll2 1257 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
16 simpll3 1259 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → 𝑌𝐹)
1715, 16jca 555 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹))
18 elrestr 16291 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
19183expa 1112 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
2017, 19sylan 489 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠𝐹) → (𝑠𝑌) ∈ (𝐹t 𝑌))
21 inss1 3976 . . . . . . . . . 10 (𝑠𝑌) ⊆ 𝑠
22 ssralv 3807 . . . . . . . . . . . 12 ((𝑠𝑌) ⊆ 𝑠 → (∀𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
2322ralimdv 3101 . . . . . . . . . . 11 ((𝑠𝑌) ⊆ 𝑠 → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢𝑠𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
24 ssralv 3807 . . . . . . . . . . 11 ((𝑠𝑌) ⊆ 𝑠 → (∀𝑢𝑠𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
2523, 24syld 47 . . . . . . . . . 10 ((𝑠𝑌) ⊆ 𝑠 → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
2621, 25ax-mp 5 . . . . . . . . 9 (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥)
27 inss2 3977 . . . . . . . . . . . . 13 (𝑠𝑌) ⊆ 𝑌
2827sseli 3740 . . . . . . . . . . . 12 (𝑢 ∈ (𝑠𝑌) → 𝑢𝑌)
2927sseli 3740 . . . . . . . . . . . 12 (𝑣 ∈ (𝑠𝑌) → 𝑣𝑌)
30 ovres 6965 . . . . . . . . . . . . 13 ((𝑢𝑌𝑣𝑌) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
3130breq1d 4814 . . . . . . . . . . . 12 ((𝑢𝑌𝑣𝑌) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
3228, 29, 31syl2an 495 . . . . . . . . . . 11 ((𝑢 ∈ (𝑠𝑌) ∧ 𝑣 ∈ (𝑠𝑌)) → ((𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ (𝑢𝐷𝑣) < 𝑥))
3332ralbidva 3123 . . . . . . . . . 10 (𝑢 ∈ (𝑠𝑌) → (∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥))
3433ralbiia 3117 . . . . . . . . 9 (∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢𝐷𝑣) < 𝑥)
3526, 34sylibr 224 . . . . . . . 8 (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
36 raleq 3277 . . . . . . . . . . 11 (𝑦 = (𝑠𝑌) → (∀𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3736raleqbi1dv 3285 . . . . . . . . . 10 (𝑦 = (𝑠𝑌) → (∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
3837rspcev 3449 . . . . . . . . 9 (((𝑠𝑌) ∈ (𝐹t 𝑌) ∧ ∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥) → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
3938ex 449 . . . . . . . 8 ((𝑠𝑌) ∈ (𝐹t 𝑌) → (∀𝑢 ∈ (𝑠𝑌)∀𝑣 ∈ (𝑠𝑌)(𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
4020, 35, 39syl2im 40 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
4140rexlimdva 3169 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → (∃𝑠𝐹𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥))
4214, 41mpd 15 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
4342ralrimiva 3104 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)
44 simp1 1131 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → 𝐷 ∈ (∞Met‘𝑋))
45 xmetres2 22367 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
4644, 8, 45syl2anc 696 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
4746adantr 472 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
48 iscfil2 23264 . . . . 5 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
4947, 48syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ((𝐹t 𝑌) ∈ (Fil‘𝑌) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐹t 𝑌)∀𝑢𝑦𝑣𝑦 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑥)))
5012, 43, 49mpbir2and 995 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
5150ex 449 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) → (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
52 cfilresi 23293 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷))
5352ex 449 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷)))
54533ad2ant1 1128 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → (𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷)))
55 fgtr 21895 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑋filGen(𝐹t 𝑌)) = 𝐹)
56553adant1 1125 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝑋filGen(𝐹t 𝑌)) = 𝐹)
5756eleq1d 2824 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝑋filGen(𝐹t 𝑌)) ∈ (CauFil‘𝐷) ↔ 𝐹 ∈ (CauFil‘𝐷)))
5854, 57sylibd 229 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → ((𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) → 𝐹 ∈ (CauFil‘𝐷)))
5951, 58impbid 202 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝑌𝐹) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cdif 3712  cin 3714  wss 3715   class class class wbr 4804   × cxp 5264  cres 5268  cfv 6049  (class class class)co 6813   < clt 10266  +crp 12025  t crest 16283  ∞Metcxmt 19933  fBascfbas 19936  filGencfg 19937  Filcfil 21850  CauFilccfil 23250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-rest 16285  df-xmet 19941  df-fbas 19945  df-fg 19946  df-fil 21851  df-cfil 23253
This theorem is referenced by:  cmetss  23313
  Copyright terms: Public domain W3C validator