MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfidm Structured version   Visualization version   GIF version

Theorem cfidm 9057
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfidm (cf‘(cf‘𝐴)) = (cf‘𝐴)

Proof of Theorem cfidm
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfle 9036 . . . 4 (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴))
3 cfsmo 9053 . . . 4 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)))
4 cfon 9037 . . . . 5 (cf‘𝐴) ∈ On
5 cfcoflem 9054 . . . . 5 ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
64, 5mpan2 706 . . . 4 (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
73, 6mpd 15 . . 3 (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))
82, 7eqssd 3605 . 2 (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
9 cf0 9033 . . 3 (cf‘∅) = ∅
10 cff 9030 . . . . . . 7 cf:On⟶On
1110fdmi 6019 . . . . . 6 dom cf = On
1211eleq2i 2690 . . . . 5 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
13 ndmfv 6185 . . . . 5 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
1412, 13sylnbir 321 . . . 4 𝐴 ∈ On → (cf‘𝐴) = ∅)
1514fveq2d 6162 . . 3 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅))
169, 15, 143eqtr4a 2681 . 2 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
178, 16pm2.61i 176 1 (cf‘(cf‘𝐴)) = (cf‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wral 2908  wrex 2909  wss 3560  c0 3897  dom cdm 5084  Oncon0 5692  wf 5853  cfv 5857  Smo wsmo 7402  cfccf 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-smo 7403  df-recs 7428  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-card 8725  df-cf 8727  df-acn 8728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator