MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Structured version   Visualization version   GIF version

Theorem cf0 9111
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0 (cf‘∅) = ∅

Proof of Theorem cf0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 9109 . . 3 (cf‘∅) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))}
2 0ss 4005 . . . . . . . . . . . . 13 ∅ ⊆ 𝑦
32biantru 525 . . . . . . . . . . . 12 (𝑦 ⊆ ∅ ↔ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))
4 ss0b 4006 . . . . . . . . . . . 12 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
53, 4bitr3i 266 . . . . . . . . . . 11 ((𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦) ↔ 𝑦 = ∅)
65anbi2i 730 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ (𝑥 = (card‘𝑦) ∧ 𝑦 = ∅))
7 ancom 465 . . . . . . . . . 10 ((𝑥 = (card‘𝑦) ∧ 𝑦 = ∅) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
86, 7bitri 264 . . . . . . . . 9 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ (𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
98exbii 1814 . . . . . . . 8 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)))
10 0ex 4823 . . . . . . . . . 10 ∅ ∈ V
11 fveq2 6229 . . . . . . . . . . 11 (𝑦 = ∅ → (card‘𝑦) = (card‘∅))
1211eqeq2d 2661 . . . . . . . . . 10 (𝑦 = ∅ → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘∅)))
1310, 12ceqsexv 3273 . . . . . . . . 9 (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = (card‘∅))
14 card0 8822 . . . . . . . . . 10 (card‘∅) = ∅
1514eqeq2i 2663 . . . . . . . . 9 (𝑥 = (card‘∅) ↔ 𝑥 = ∅)
1613, 15bitri 264 . . . . . . . 8 (∃𝑦(𝑦 = ∅ ∧ 𝑥 = (card‘𝑦)) ↔ 𝑥 = ∅)
179, 16bitri 264 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦)) ↔ 𝑥 = ∅)
1817abbii 2768 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {𝑥𝑥 = ∅}
19 df-sn 4211 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
2018, 19eqtr4i 2676 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
2120inteqi 4511 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = {∅}
2210intsn 4545 . . . 4 {∅} = ∅
2321, 22eqtri 2673 . . 3 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ ∅ ∧ ∅ ⊆ 𝑦))} = ∅
241, 23sseqtri 3670 . 2 (cf‘∅) ⊆ ∅
25 ss0b 4006 . 2 ((cf‘∅) ⊆ ∅ ↔ (cf‘∅) = ∅)
2624, 25mpbi 220 1 (cf‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wex 1744  {cab 2637  wss 3607  c0 3948  {csn 4210   cuni 4468   cint 4507  cfv 5926  cardccrd 8799  cfccf 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-en 7998  df-card 8803  df-cf 8805
This theorem is referenced by:  cfeq0  9116  cflim2  9123  cfidm  9135  alephsing  9136  alephreg  9442  pwcfsdom  9443  rankcf  9637
  Copyright terms: Public domain W3C validator