Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cesaro Structured version   Visualization version   GIF version

Theorem cesaro 2720
 Description: "Cesaro", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, EAO-2: PeM and SaM therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
cesaro.maj 𝑥(𝜑 → ¬ 𝜓)
cesaro.min 𝑥(𝜒𝜓)
cesaro.e 𝑥𝜒
Assertion
Ref Expression
cesaro 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem cesaro
StepHypRef Expression
1 cesaro.e . 2 𝑥𝜒
2 cesaro.maj . . . . 5 𝑥(𝜑 → ¬ 𝜓)
32spi 2206 . . . 4 (𝜑 → ¬ 𝜓)
4 cesaro.min . . . . 5 𝑥(𝜒𝜓)
54spi 2206 . . . 4 (𝜒𝜓)
63, 5nsyl3 135 . . 3 (𝜒 → ¬ 𝜑)
76ancli 576 . 2 (𝜒 → (𝜒 ∧ ¬ 𝜑))
81, 7eximii 1910 1 𝑥(𝜒 ∧ ¬ 𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383  ∀wal 1627  ∃wex 1850 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-12 2201 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1851 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator