![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsrexv | Structured version Visualization version GIF version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsrexv | ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3048 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
2 | an12 873 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) | |
3 | 2 | exbii 1915 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
4 | 1, 3 | bitr4i 267 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
5 | eleq1 2819 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | ceqsrexv.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | anbi12d 749 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
8 | 7 | ceqsexgv 3466 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓))) |
9 | 8 | bianabs 960 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥(𝑥 = 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ 𝜓)) |
10 | 4, 9 | syl5bb 272 | 1 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∃wex 1845 ∈ wcel 2131 ∃wrex 3043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-12 2188 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-rex 3048 df-v 3334 |
This theorem is referenced by: ceqsrexbv 3468 ceqsrex2v 3469 reuxfr2d 5032 f1oiso 6756 creur 11198 creui 11199 deg1ldg 24043 ulm2 24330 iscgra1 25893 reuxfr3d 29629 poimirlem24 33738 eqlkr3 34883 diclspsn 36977 rmxdiophlem 38076 expdiophlem1 38082 expdiophlem2 38083 |
Copyright terms: Public domain | W3C validator |