![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ 𝐴 ∈ V |
ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1992 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ceqsalv.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | ceqsalv.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | ceqsal 3372 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1630 = wceq 1632 ∈ wcel 2139 Vcvv 3340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-12 2196 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-v 3342 |
This theorem is referenced by: ralxpxfr2d 3466 clel4 3482 frsn 5346 raliunxp 5417 fv3 6367 funimass4 6409 marypha2lem3 8508 kmlem12 9175 fpwwe2lem12 9655 vdwmc2 15885 itg2leub 23700 nmoubi 27936 choc0 28494 nmopub 29076 nmfnleub 29093 elintfv 31969 heibor1lem 33921 elmapintrab 38384 |
Copyright terms: Public domain | W3C validator |