Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalgALT Structured version   Visualization version   GIF version

Theorem ceqsalgALT 3383
 Description: Alternate proof of ceqsalg 3382, not using ceqsalt 3380. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ceqsalg.1 𝑥𝜓
ceqsalg.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalgALT (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsalgALT
StepHypRef Expression
1 elisset 3367 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 nfa1 2184 . . . 4 𝑥𝑥(𝑥 = 𝐴𝜑)
3 ceqsalg.1 . . . 4 𝑥𝜓
4 ceqsalg.2 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
54biimpd 219 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
65a2i 14 . . . . 5 ((𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓))
76sps 2209 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓))
82, 3, 7exlimd 2243 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴𝜓))
91, 8syl5com 31 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜓))
104biimprcd 240 . . 3 (𝜓 → (𝑥 = 𝐴𝜑))
113, 10alrimi 2238 . 2 (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))
129, 11impbid1 215 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1629   = wceq 1631  ∃wex 1852  Ⅎwnf 1856   ∈ wcel 2145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-12 2203  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-v 3353 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator