![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsalgALT | Structured version Visualization version GIF version |
Description: Alternate proof of ceqsalg 3382, not using ceqsalt 3380. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by BJ, 29-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ceqsalg.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsalg.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalgALT | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 3367 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | nfa1 2184 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝐴 → 𝜑) | |
3 | ceqsalg.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | ceqsalg.2 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | biimpd 219 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
6 | 5 | a2i 14 | . . . . 5 ⊢ ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
7 | 6 | sps 2209 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
8 | 2, 3, 7 | exlimd 2243 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
9 | 1, 8 | syl5com 31 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
10 | 4 | biimprcd 240 | . . 3 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
11 | 3, 10 | alrimi 2238 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
12 | 9, 11 | impbid1 215 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1629 = wceq 1631 ∃wex 1852 Ⅎwnf 1856 ∈ wcel 2145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-v 3353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |