![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceim1l | Structured version Visualization version GIF version |
Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
Ref | Expression |
---|---|
ceim1l | ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 10546 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
2 | reflcl 12805 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℝ) |
4 | 3 | recnd 10270 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘-𝐴) ∈ ℂ) |
5 | ax-1cn 10196 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | negdi 10540 | . . . 4 ⊢ (((⌊‘-𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘-𝐴) + 1) = (-(⌊‘-𝐴) + -1)) | |
7 | 4, 5, 6 | sylancl 574 | . . 3 ⊢ (𝐴 ∈ ℝ → -((⌊‘-𝐴) + 1) = (-(⌊‘-𝐴) + -1)) |
8 | 4 | negcld 10581 | . . . 4 ⊢ (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℂ) |
9 | negsub 10531 | . . . 4 ⊢ ((-(⌊‘-𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (-(⌊‘-𝐴) + -1) = (-(⌊‘-𝐴) − 1)) | |
10 | 8, 5, 9 | sylancl 574 | . . 3 ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) + -1) = (-(⌊‘-𝐴) − 1)) |
11 | 7, 10 | eqtr2d 2806 | . 2 ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) = -((⌊‘-𝐴) + 1)) |
12 | peano2re 10411 | . . . 4 ⊢ ((⌊‘-𝐴) ∈ ℝ → ((⌊‘-𝐴) + 1) ∈ ℝ) | |
13 | 3, 12 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → ((⌊‘-𝐴) + 1) ∈ ℝ) |
14 | flltp1 12809 | . . . . . 6 ⊢ (-𝐴 ∈ ℝ → -𝐴 < ((⌊‘-𝐴) + 1)) | |
15 | 1, 14 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 < ((⌊‘-𝐴) + 1)) |
16 | 15 | adantr 466 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ((⌊‘-𝐴) + 1) ∈ ℝ) → -𝐴 < ((⌊‘-𝐴) + 1)) |
17 | ltnegcon1 10731 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ((⌊‘-𝐴) + 1) ∈ ℝ) → (-𝐴 < ((⌊‘-𝐴) + 1) ↔ -((⌊‘-𝐴) + 1) < 𝐴)) | |
18 | 16, 17 | mpbid 222 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ((⌊‘-𝐴) + 1) ∈ ℝ) → -((⌊‘-𝐴) + 1) < 𝐴) |
19 | 13, 18 | mpdan 667 | . 2 ⊢ (𝐴 ∈ ℝ → -((⌊‘-𝐴) + 1) < 𝐴) |
20 | 11, 19 | eqbrtrd 4808 | 1 ⊢ (𝐴 ∈ ℝ → (-(⌊‘-𝐴) − 1) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 1c1 10139 + caddc 10141 < clt 10276 − cmin 10468 -cneg 10469 ⌊cfl 12799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fl 12801 |
This theorem is referenced by: ceilm1lt 12855 ceile 12856 ltflcei 33730 |
Copyright terms: Public domain | W3C validator |