Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemn3 Structured version   Visualization version   GIF version

Theorem cdlemn3 37006
Description: Part of proof of Lemma N of [Crawley] p. 121 line 31. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
cdlemn3.l = (le‘𝐾)
cdlemn3.a 𝐴 = (Atoms‘𝐾)
cdlemn3.p 𝑃 = ((oc‘𝐾)‘𝑊)
cdlemn3.h 𝐻 = (LHyp‘𝐾)
cdlemn3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemn3.f 𝐹 = (𝑇 (𝑃) = 𝑄)
cdlemn3.g 𝐺 = (𝑇 (𝑃) = 𝑅)
cdlemn3.j 𝐽 = (𝑇 (𝑄) = 𝑅)
Assertion
Ref Expression
cdlemn3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
Distinct variable groups:   ,   𝐴,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐹()   𝐺()   𝐽()

Proof of Theorem cdlemn3
StepHypRef Expression
1 simp1 1131 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 cdlemn3.l . . . . . . . . . 10 = (le‘𝐾)
3 cdlemn3.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
4 cdlemn3.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
5 cdlemn3.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 35826 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
763ad2ant1 1128 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp2 1132 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 cdlemn3.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemn3.f . . . . . . . . 9 𝐹 = (𝑇 (𝑃) = 𝑄)
112, 3, 4, 9, 10ltrniotacl 36387 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
121, 7, 8, 11syl3anc 1477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹𝑇)
13 eqid 2760 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 4, 9ltrn1o 35931 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
151, 12, 14syl2anc 696 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6299 . . . . . 6 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
187simpld 477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃𝐴)
1913, 3atbase 35097 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝑃 ∈ (Base‘𝐾))
21 fvco3 6438 . . . . 5 ((𝐹:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐽𝐹)‘𝑃) = (𝐽‘(𝐹𝑃)))
2217, 20, 21syl2anc 696 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = (𝐽‘(𝐹𝑃)))
232, 3, 4, 9, 10ltrniotaval 36389 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
241, 7, 8, 23syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐹𝑃) = 𝑄)
2524fveq2d 6357 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽‘(𝐹𝑃)) = (𝐽𝑄))
26 cdlemn3.j . . . . 5 𝐽 = (𝑇 (𝑄) = 𝑅)
272, 3, 4, 9, 26ltrniotaval 36389 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝑄) = 𝑅)
2822, 25, 273eqtrd 2798 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = 𝑅)
29 cdlemn3.g . . . . 5 𝐺 = (𝑇 (𝑃) = 𝑅)
302, 3, 4, 9, 29ltrniotaval 36389 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
317, 30syld3an2 1519 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3228, 31eqtr4d 2797 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐽𝐹)‘𝑃) = (𝐺𝑃))
332, 3, 4, 9, 26ltrniotacl 36387 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐽𝑇)
344, 9ltrnco 36527 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐽𝑇𝐹𝑇) → (𝐽𝐹) ∈ 𝑇)
351, 33, 12, 34syl3anc 1477 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) ∈ 𝑇)
362, 3, 4, 9, 29ltrniotacl 36387 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
377, 36syld3an2 1519 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
382, 3, 4, 9ltrneq3 36016 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝐹) ∈ 𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐽𝐹)‘𝑃) = (𝐺𝑃) ↔ (𝐽𝐹) = 𝐺))
391, 35, 37, 7, 38syl121anc 1482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (((𝐽𝐹)‘𝑃) = (𝐺𝑃) ↔ (𝐽𝐹) = 𝐺))
4032, 39mpbid 222 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐽𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  ccom 5270  wf 6045  1-1-ontowf1o 6048  cfv 6049  crio 6774  Basecbs 16079  lecple 16170  occoc 16171  Atomscatm 35071  HLchlt 35158  LHypclh 35791  LTrncltrn 35908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-undef 7569  df-map 8027  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305  df-lplanes 35306  df-lvols 35307  df-lines 35308  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967
This theorem is referenced by:  cdlemn4  37007
  Copyright terms: Public domain W3C validator