Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemki Structured version   Visualization version   GIF version

Theorem cdlemki 36650
 Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: Eliminate and put into cdlemksel 36654. (Contributed by NM, 25-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.i 𝐼 = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
Assertion
Ref Expression
cdlemki ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐼𝑇)
Distinct variable groups:   ,𝑖   ,𝑖   ,𝑖   𝐴,𝑖   𝑖,𝐹   𝑖,𝐻   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝑇,𝑖   𝑖,𝑊   𝑖,𝐺
Allowed substitution hints:   𝐵(𝑖)   𝐼(𝑖)

Proof of Theorem cdlemki
StepHypRef Expression
1 simp11 1246 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp22 1250 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp1 1131 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇))
4 simp21 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝑁𝑇)
5 cdlemk.l . . . . 5 = (le‘𝐾)
6 cdlemk.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnel 35947 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑁𝑃) ∈ 𝐴 ∧ ¬ (𝑁𝑃) 𝑊))
101, 4, 2, 9syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑁𝑃) ∈ 𝐴 ∧ ¬ (𝑁𝑃) 𝑊))
11 simp11l 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐾 ∈ HL)
12 simp22l 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝑃𝐴)
139simpld 477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑁𝑃) ∈ 𝐴)
141, 4, 2, 13syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑁𝑃) ∈ 𝐴)
15 cdlemk.j . . . . . 6 = (join‘𝐾)
165, 15, 6hlatlej2 35184 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑁𝑃) ∈ 𝐴) → (𝑁𝑃) (𝑃 (𝑁𝑃)))
1711, 12, 14, 16syl3anc 1477 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑁𝑃) (𝑃 (𝑁𝑃)))
18 simp23 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝑁))
1918oveq2d 6831 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑃 (𝑅𝐹)) = (𝑃 (𝑅𝑁)))
20 cdlemk.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
215, 15, 6, 7, 8, 20trljat1 35975 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝑁)) = (𝑃 (𝑁𝑃)))
221, 4, 2, 21syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑃 (𝑅𝑁)) = (𝑃 (𝑁𝑃)))
2319, 22eqtr2d 2796 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑃 (𝑁𝑃)) = (𝑃 (𝑅𝐹)))
2417, 23breqtrd 4831 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑁𝑃) (𝑃 (𝑅𝐹)))
25 simp31 1252 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐹 ≠ ( I ↾ 𝐵))
26 simp32 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐺 ≠ ( I ↾ 𝐵))
27 simp33 1254 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑅𝐺) ≠ (𝑅𝐹))
2827necomd 2988 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑅𝐹) ≠ (𝑅𝐺))
29 cdlemk.b . . . 4 𝐵 = (Base‘𝐾)
30 cdlemk.m . . . 4 = (meet‘𝐾)
31 eqid 2761 . . . 4 ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))
3229, 5, 15, 30, 6, 7, 8, 20, 31cdlemh 36626 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑁𝑃) ∈ 𝐴 ∧ ¬ (𝑁𝑃) 𝑊) ∧ (𝑁𝑃) (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) 𝑊))
333, 2, 10, 24, 25, 26, 28, 32syl133anc 1500 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) 𝑊))
34 cdlemk.i . . 3 𝐼 = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
355, 6, 7, 8, 34ltrniotacl 36388 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) 𝑊)) → 𝐼𝑇)
361, 2, 33, 35syl3anc 1477 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐼𝑇)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140   ≠ wne 2933   class class class wbr 4805   I cid 5174  ◡ccnv 5266   ↾ cres 5269   ∘ ccom 5271  ‘cfv 6050  ℩crio 6775  (class class class)co 6815  Basecbs 16080  lecple 16171  joincjn 17166  meetcmee 17167  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  trLctrl 35967 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-undef 7570  df-map 8028  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968 This theorem is referenced by:  cdlemksel  36654
 Copyright terms: Public domain W3C validator