Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkfid1N Structured version   Visualization version   GIF version

Theorem cdlemkfid1N 36729
Description: Lemma for cdlemkfid3N 36733. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemkfid1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))

Proof of Theorem cdlemkfid1N
StepHypRef Expression
1 simp1 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp23 1251 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺𝑇)
3 simp3r 1245 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 cdlemk5.l . . . . 5 = (le‘𝐾)
5 cdlemk5.j . . . . 5 = (join‘𝐾)
6 cdlemk5.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk5.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk5.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemk5.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
104, 5, 6, 7, 8, 9trljat3 35976 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = ((𝐺𝑃) (𝑅𝐺)))
111, 2, 3, 10syl3anc 1477 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃 (𝑅𝐺)) = ((𝐺𝑃) (𝑅𝐺)))
12 simp1l 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
13 simp21 1249 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
14 simp3rl 1313 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑃𝐴)
154, 6, 7, 8ltrnat 35947 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
161, 13, 14, 15syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹𝑃) ∈ 𝐴)
174, 6, 7, 8ltrnat 35947 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
181, 2, 14, 17syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐺𝑃) ∈ 𝐴)
195, 6hlatjcom 35175 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → ((𝐹𝑃) (𝐺𝑃)) = ((𝐺𝑃) (𝐹𝑃)))
2012, 16, 18, 19syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝐺𝑃)) = ((𝐺𝑃) (𝐹𝑃)))
214, 5, 6, 7, 8, 9trlcoabs2N 36530 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
221, 13, 2, 3, 21syl121anc 1482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝐺𝑃)))
237, 8, 9trlcocnv 36528 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
241, 13, 2, 23syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
2524oveq2d 6830 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
264, 5, 6, 7, 8, 9trlcoabs2N 36530 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝐹𝑃)))
271, 2, 13, 3, 26syl121anc 1482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐹𝐺))) = ((𝐺𝑃) (𝐹𝑃)))
2825, 27eqtr3d 2796 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝐹𝑃)))
2920, 22, 283eqtr4d 2804 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐹𝑃) (𝑅‘(𝐺𝐹))) = ((𝐺𝑃) (𝑅‘(𝐺𝐹))))
3011, 29oveq12d 6832 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))))
31 cdlemk5.b . . . . 5 𝐵 = (Base‘𝐾)
3231, 7, 8, 9trlcl 35972 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
331, 2, 32syl2anc 696 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ∈ 𝐵)
34 simp1r 1241 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
35 simp3l 1244 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝐹))
366, 7, 8, 9trlcocnvat 36532 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
3712, 34, 2, 13, 35, 36syl221anc 1488 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
384, 6, 7, 8ltrnel 35946 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
391, 2, 3, 38syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
407, 8ltrncnv 35953 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
411, 13, 40syl2anc 696 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
427, 8, 9trlcnv 35973 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
431, 13, 42syl2anc 696 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝐹))
4435, 43neeqtrrd 3006 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅𝐹))
45 simp22 1250 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
4631, 7, 8ltrncnvnid 35934 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) → 𝐹 ≠ ( I ↾ 𝐵))
471, 13, 45, 46syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
4831, 7, 8, 9trlcone 36536 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ 𝐹 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
491, 2, 41, 44, 47, 48syl122anc 1486 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹)))
50 eqid 2760 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
5150, 6, 7, 8, 9trlator0 35979 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
521, 2, 51syl2anc 696 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
534, 7, 8, 9trlle 35992 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
5412, 34, 2, 53syl21anc 1476 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐺) 𝑊)
557, 8ltrnco 36527 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
561, 2, 41, 55syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐺𝐹) ∈ 𝑇)
574, 7, 8, 9trlle 35992 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) 𝑊)
581, 56, 57syl2anc 696 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅‘(𝐺𝐹)) 𝑊)
594, 5, 50, 6, 7lhp2at0nle 35842 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ (𝑅𝐺) ≠ (𝑅‘(𝐺𝐹))) ∧ (((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)) ∧ (𝑅𝐺) 𝑊) ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) 𝑊)) → ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺)))
601, 39, 49, 52, 54, 37, 58, 59syl322anc 1505 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺)))
61 cdlemk5.m . . . 4 = (meet‘𝐾)
6231, 4, 5, 61, 62llnma1b 35593 . . 3 ((𝐾 ∈ HL ∧ ((𝑅𝐺) ∈ 𝐵 ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) ∧ ¬ (𝑅‘(𝐺𝐹)) ((𝐺𝑃) (𝑅𝐺))) → (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
6312, 33, 18, 37, 60, 62syl131anc 1490 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐺𝑃) (𝑅𝐺)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
6430, 63eqtrd 2794 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804   I cid 5173  ccnv 5265  cres 5268  ccom 5270  cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  meetcmee 17166  0.cp0 17258  Atomscatm 35071  HLchlt 35158  LHypclh 35791  LTrncltrn 35908  trLctrl 35966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-riotaBAD 34760
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-undef 7569  df-map 8027  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305  df-lplanes 35306  df-lvols 35307  df-lines 35308  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967
This theorem is referenced by:  cdlemkfid2N  36731  cdlemkfid3N  36733
  Copyright terms: Public domain W3C validator