Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk55u Structured version   Visualization version   GIF version

Theorem cdlemk55u 36776
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 11, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
cdlemk5.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk55u ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑈(𝑧,𝑔,𝑏)   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk55u
StepHypRef Expression
1 simpr 471 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐹 = 𝑁)
2 simp11 1245 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp22 1249 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
4 simp23 1250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐼𝑇)
5 cdlemk5.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 cdlemk5.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
75, 6ltrnco 36529 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐼𝑇) → (𝐺𝐼) ∈ 𝑇)
82, 3, 4, 7syl3anc 1476 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐼) ∈ 𝑇)
98adantr 466 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝐺𝐼) ∈ 𝑇)
10 cdlemk5.x . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
11 cdlemk5.u . . . . 5 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
1210, 11cdlemk40t 36728 . . . 4 ((𝐹 = 𝑁 ∧ (𝐺𝐼) ∈ 𝑇) → (𝑈‘(𝐺𝐼)) = (𝐺𝐼))
131, 9, 12syl2anc 573 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑈‘(𝐺𝐼)) = (𝐺𝐼))
14 simpl22 1322 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐺𝑇)
1510, 11cdlemk40t 36728 . . . . 5 ((𝐹 = 𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺)
161, 14, 15syl2anc 573 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑈𝐺) = 𝐺)
17 simpl23 1324 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → 𝐼𝑇)
1810, 11cdlemk40t 36728 . . . . 5 ((𝐹 = 𝑁𝐼𝑇) → (𝑈𝐼) = 𝐼)
191, 17, 18syl2anc 573 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑈𝐼) = 𝐼)
2016, 19coeq12d 5424 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → ((𝑈𝐺) ∘ (𝑈𝐼)) = (𝐺𝐼))
2113, 20eqtr4d 2808 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹 = 𝑁) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))
22 simpl1 1227 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇))
23 simpl21 1320 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑅𝐹) = (𝑅𝑁))
24 simpr 471 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐹𝑁)
2523, 24jca 501 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁))
26 simpl22 1322 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐺𝑇)
27 simpl23 1324 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → 𝐼𝑇)
28 simpl3 1231 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
30 cdlemk5.l . . . 4 = (le‘𝐾)
31 cdlemk5.j . . . 4 = (join‘𝐾)
32 cdlemk5.m . . . 4 = (meet‘𝐾)
33 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
34 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
35 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
36 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
3729, 30, 31, 32, 33, 5, 6, 34, 35, 36, 10, 11cdlemk55u1 36775 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ (((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))
3822, 25, 26, 27, 28, 37syl131anc 1489 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝐹𝑁) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))
3921, 38pm2.61dane 3030 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  ifcif 4226   class class class wbr 4787   ↦ cmpt 4864   I cid 5157  ◡ccnv 5249   ↾ cres 5252   ∘ ccom 5254  ‘cfv 6030  ℩crio 6756  (class class class)co 6796  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Atomscatm 35072  HLchlt 35159  LHypclh 35793  LTrncltrn 35910  trLctrl 35968 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-undef 7555  df-map 8015  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35307  df-lplanes 35308  df-lvols 35309  df-lines 35310  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-lhyp 35797  df-laut 35798  df-ldil 35913  df-ltrn 35914  df-trl 35969 This theorem is referenced by:  cdlemk56  36781
 Copyright terms: Public domain W3C validator