Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk54 Structured version   Visualization version   GIF version

Theorem cdlemk54 36746
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk54 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧   𝑗,𝑏,𝑔,𝑧
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝑇(𝑗)   𝐹(𝑗)   𝐺(𝑗)   𝐻(𝑗)   𝐼(𝑗)   (𝑗)   𝐾(𝑗)   (𝑗)   (𝑗)   𝑁(𝑗)   𝑊(𝑗)   𝑋(𝑧,𝑔,𝑗,𝑏)   𝑌(𝑔,𝑗,𝑏)   𝑍(𝑧,𝑗,𝑏)

Proof of Theorem cdlemk54
StepHypRef Expression
1 coass 5813 . . 3 ((𝐺𝐼) ∘ 𝑗) = (𝐺 ∘ (𝐼𝑗))
2 csbeq1 3675 . . 3 (((𝐺𝐼) ∘ 𝑗) = (𝐺 ∘ (𝐼𝑗)) → ((𝐺𝐼) ∘ 𝑗) / 𝑔𝑋 = (𝐺 ∘ (𝐼𝑗)) / 𝑔𝑋)
31, 2ax-mp 5 . 2 ((𝐺𝐼) ∘ 𝑗) / 𝑔𝑋 = (𝐺 ∘ (𝐼𝑗)) / 𝑔𝑋
4 simp1 1131 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)))
5 simp21 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇))
6 simp1l 1240 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simp22 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐺𝑇)
8 simp31l 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝐼𝑇)
9 cdlemk5.h . . . . 5 𝐻 = (LHyp‘𝐾)
10 cdlemk5.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
119, 10ltrnco 36507 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐼𝑇) → (𝐺𝐼) ∈ 𝑇)
126, 7, 8, 11syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) ∈ 𝑇)
13 simp23 1251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
14 simp32 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗𝑇)
15 simp333 1413 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼)))
1615necomd 2985 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅‘(𝐺𝐼)) ≠ (𝑅𝑗))
17 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
18 cdlemk5.l . . . 4 = (le‘𝐾)
19 cdlemk5.j . . . 4 = (join‘𝐾)
20 cdlemk5.m . . . 4 = (meet‘𝐾)
21 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
22 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
23 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
24 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
25 cdlemk5.x . . . 4 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
2617, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 36745 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝐼) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑗𝑇 ∧ (𝑅‘(𝐺𝐼)) ≠ (𝑅𝑗))) → ((𝐺𝐼) ∘ 𝑗) / 𝑔𝑋 = ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋))
274, 5, 12, 13, 14, 16, 26syl132anc 1495 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) ∘ 𝑗) / 𝑔𝑋 = ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋))
28 simp2 1132 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)))
299, 10ltrnco 36507 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼𝑇𝑗𝑇) → (𝐼𝑗) ∈ 𝑇)
306, 8, 14, 29syl3anc 1477 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐼𝑗) ∈ 𝑇)
31 simp31r 1382 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐺) = (𝑅𝐼))
32 simp332 1412 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝑗) ≠ (𝑅𝐺))
3332, 31neeqtrd 2999 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝑗) ≠ (𝑅𝐼))
3433necomd 2985 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐼) ≠ (𝑅𝑗))
35 simp331 1411 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → 𝑗 ≠ ( I ↾ 𝐵))
3617, 9, 10, 22trlcone 36516 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑇𝑗𝑇) ∧ ((𝑅𝐼) ≠ (𝑅𝑗) ∧ 𝑗 ≠ ( I ↾ 𝐵))) → (𝑅𝐼) ≠ (𝑅‘(𝐼𝑗)))
376, 8, 14, 34, 35, 36syl122anc 1486 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐼) ≠ (𝑅‘(𝐼𝑗)))
3831, 37eqnetrd 2997 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝑅𝐺) ≠ (𝑅‘(𝐼𝑗)))
3917, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 36745 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑗) ∈ 𝑇 ∧ (𝑅𝐺) ≠ (𝑅‘(𝐼𝑗)))) → (𝐺 ∘ (𝐼𝑗)) / 𝑔𝑋 = (𝐺 / 𝑔𝑋(𝐼𝑗) / 𝑔𝑋))
404, 28, 30, 38, 39syl112anc 1481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 ∘ (𝐼𝑗)) / 𝑔𝑋 = (𝐺 / 𝑔𝑋(𝐼𝑗) / 𝑔𝑋))
4117, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 36745 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐼𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑗𝑇 ∧ (𝑅𝐼) ≠ (𝑅𝑗))) → (𝐼𝑗) / 𝑔𝑋 = (𝐼 / 𝑔𝑋𝑗 / 𝑔𝑋))
424, 5, 8, 13, 14, 34, 41syl132anc 1495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐼𝑗) / 𝑔𝑋 = (𝐼 / 𝑔𝑋𝑗 / 𝑔𝑋))
4342coeq2d 5438 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋(𝐼𝑗) / 𝑔𝑋) = (𝐺 / 𝑔𝑋 ∘ (𝐼 / 𝑔𝑋𝑗 / 𝑔𝑋)))
44 coass 5813 . . . 4 ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋) = (𝐺 / 𝑔𝑋 ∘ (𝐼 / 𝑔𝑋𝑗 / 𝑔𝑋))
4543, 44syl6eqr 2810 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 / 𝑔𝑋(𝐼𝑗) / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
4640, 45eqtrd 2792 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺 ∘ (𝐼𝑗)) / 𝑔𝑋 = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
473, 27, 463eqtr3a 2816 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1630   ∈ wcel 2137   ≠ wne 2930  ∀wral 3048  ⦋csb 3672   class class class wbr 4802   I cid 5171  ◡ccnv 5263   ↾ cres 5266   ∘ ccom 5268  ‘cfv 6047  ℩crio 6771  (class class class)co 6811  Basecbs 16057  lecple 16148  joincjn 17143  meetcmee 17144  Atomscatm 35051  HLchlt 35138  LHypclh 35771  LTrncltrn 35888  trLctrl 35946 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-riotaBAD 34740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-1st 7331  df-2nd 7332  df-undef 7566  df-map 8023  df-preset 17127  df-poset 17145  df-plt 17157  df-lub 17173  df-glb 17174  df-join 17175  df-meet 17176  df-p0 17238  df-p1 17239  df-lat 17245  df-clat 17307  df-oposet 34964  df-ol 34966  df-oml 34967  df-covers 35054  df-ats 35055  df-atl 35086  df-cvlat 35110  df-hlat 35139  df-llines 35285  df-lplanes 35286  df-lvols 35287  df-lines 35288  df-psubsp 35290  df-pmap 35291  df-padd 35583  df-lhyp 35775  df-laut 35776  df-ldil 35891  df-ltrn 35892  df-trl 35947 This theorem is referenced by:  cdlemk55a  36747
 Copyright terms: Public domain W3C validator