Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39u1 Structured version   Visualization version   GIF version

Theorem cdlemk39u1 36726
 Description: Lemma for cdlemk39u 36727. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
cdlemk5.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk39u1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏
Allowed substitution hints:   𝑈(𝑧,𝑔,𝑏)   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk39u1
StepHypRef Expression
1 simp22 1226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑁)
2 simp23 1227 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
3 cdlemk5.x . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
4 cdlemk5.u . . . . 5 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
53, 4cdlemk40f 36678 . . . 4 ((𝐹𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)
61, 2, 5syl2anc 696 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)
76fveq2d 6344 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = (𝑅𝐺 / 𝑔𝑋))
8 simp11 1222 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp12 1223 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
10 simp13 1224 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑁𝑇)
11 simp21 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = (𝑅𝑁))
12 cdlemk5.b . . . . . 6 𝐵 = (Base‘𝐾)
13 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemk5.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
1612, 13, 14, 15trlnid 35938 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝐹𝑁 ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹 ≠ ( I ↾ 𝐵))
178, 9, 10, 1, 11, 16syl122anc 1472 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 ≠ ( I ↾ 𝐵))
189, 17jca 555 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
19 simp3 1130 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 cdlemk5.l . . . 4 = (le‘𝐾)
21 cdlemk5.j . . . 4 = (join‘𝐾)
22 cdlemk5.m . . . 4 = (meet‘𝐾)
23 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
24 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
25 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
2612, 20, 21, 22, 23, 13, 14, 15, 24, 25, 3cdlemk39s-id 36699 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
278, 18, 2, 10, 19, 11, 26syl132anc 1481 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))
287, 27eqbrtrd 4814 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127   ≠ wne 2920  ∀wral 3038  ⦋csb 3662  ifcif 4218   class class class wbr 4792   ↦ cmpt 4869   I cid 5161  ◡ccnv 5253   ↾ cres 5256   ∘ ccom 5258  ‘cfv 6037  ℩crio 6761  (class class class)co 6801  Basecbs 16030  lecple 16121  joincjn 17116  meetcmee 17117  Atomscatm 35022  HLchlt 35109  LHypclh 35742  LTrncltrn 35859  trLctrl 35917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-riotaBAD 34711 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-undef 7556  df-map 8013  df-preset 17100  df-poset 17118  df-plt 17130  df-lub 17146  df-glb 17147  df-join 17148  df-meet 17149  df-p0 17211  df-p1 17212  df-lat 17218  df-clat 17280  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110  df-llines 35256  df-lplanes 35257  df-lvols 35258  df-lines 35259  df-psubsp 35261  df-pmap 35262  df-padd 35554  df-lhyp 35746  df-laut 35747  df-ldil 35862  df-ltrn 35863  df-trl 35918 This theorem is referenced by:  cdlemk39u  36727
 Copyright terms: Public domain W3C validator