Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk35 Structured version   Visualization version   GIF version

Theorem cdlemk35 36619
 Description: Part of proof of Lemma K of [Crawley] p. 118. cdlemk29-3 36618 with shorter hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b 𝐵 = (Base‘𝐾)
cdlemk4.l = (le‘𝐾)
cdlemk4.j = (join‘𝐾)
cdlemk4.m = (meet‘𝐾)
cdlemk4.a 𝐴 = (Atoms‘𝐾)
cdlemk4.h 𝐻 = (LHyp‘𝐾)
cdlemk4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk4.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk4.y 𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))
cdlemk4.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk35 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
Distinct variable groups:   𝑧,𝑏,   ,𝑏,𝑧   ,𝑏,𝑧   𝐴,𝑏,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏,𝑧   𝐾,𝑏,𝑧   𝑁,𝑏,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑏)   𝑌(𝑧,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk35
Dummy variables 𝑑 𝑒 𝑓 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemk4.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemk4.l . . . 4 = (le‘𝐾)
3 cdlemk4.j . . . 4 = (join‘𝐾)
4 cdlemk4.m . . . 4 = (meet‘𝐾)
5 cdlemk4.a . . . 4 𝐴 = (Atoms‘𝐾)
6 cdlemk4.h . . . 4 𝐻 = (LHyp‘𝐾)
7 cdlemk4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk4.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
9 eqid 2724 . . . 4 (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))))) = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
10 eqid 2724 . . . 4 (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))))) = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
11 eqid 2724 . . . 4 (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk34 36617 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
13 cdlemk4.x . . . 4 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))
14 cdlemk4.y . . . . . . . . . 10 𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))
15 cdlemk4.z . . . . . . . . . . . 12 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
1615oveq1i 6775 . . . . . . . . . . 11 (𝑍 (𝑅‘(𝐺𝑏))) = (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))
1716oveq2i 6776 . . . . . . . . . 10 ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))
1814, 17eqtri 2746 . . . . . . . . 9 𝑌 = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))
1918eqeq2i 2736 . . . . . . . 8 ((𝑧𝑃) = 𝑌 ↔ (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))
2019imbi2i 325 . . . . . . 7 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2120ralbii 3082 . . . . . 6 (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2221a1i 11 . . . . 5 (𝑧𝑇 → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
2322riotabiia 6743 . . . 4 (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌)) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2413, 23eqtri 2746 . . 3 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
2512, 24syl6eqr 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) = 𝑋)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemk29-3 36618 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏(𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((((𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))‘𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))𝐺))) ∈ 𝑇)
2725, 26eqeltrrd 2804 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∀wral 3014   class class class wbr 4760   ↦ cmpt 4837   I cid 5127  ◡ccnv 5217   ↾ cres 5220   ∘ ccom 5222  ‘cfv 6001  ℩crio 6725  (class class class)co 6765   ↦ cmpt2 6767  Basecbs 15980  lecple 16071  joincjn 17066  meetcmee 17067  Atomscatm 34970  HLchlt 35057  LHypclh 35690  LTrncltrn 35807  trLctrl 35865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-riotaBAD 34659 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-undef 7519  df-map 7976  df-preset 17050  df-poset 17068  df-plt 17080  df-lub 17096  df-glb 17097  df-join 17098  df-meet 17099  df-p0 17161  df-p1 17162  df-lat 17168  df-clat 17230  df-oposet 34883  df-ol 34885  df-oml 34886  df-covers 34973  df-ats 34974  df-atl 35005  df-cvlat 35029  df-hlat 35058  df-llines 35204  df-lplanes 35205  df-lvols 35206  df-lines 35207  df-psubsp 35209  df-pmap 35210  df-padd 35502  df-lhyp 35694  df-laut 35695  df-ldil 35810  df-ltrn 35811  df-trl 35866 This theorem is referenced by:  cdlemk36  36620  cdlemk39  36623  cdlemk35s  36644
 Copyright terms: Public domain W3C validator