Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk34 Structured version   Visualization version   GIF version

Theorem cdlemk34 36692
 Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 18-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
cdlemk3.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))
Assertion
Ref Expression
cdlemk34 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝑒,𝑓,𝑖,𝐹   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖,𝑏   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑏,𝑑,𝑆,𝑒,𝑗   𝑇,𝑗   𝑗,𝑊   𝐹,𝑑,𝑒   ,𝑒   𝑓,𝐺,𝑖   ,𝑏   𝐴,𝑏,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏   𝐾,𝑏   𝑁,𝑏   𝑃,𝑏   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑧   𝑌,𝑏,𝑧   𝑧,𝑑,𝑒,𝑓,𝑖,𝑗   𝑧,   𝑧,𝐴   𝑧,𝐻   𝑧,𝐾   𝑧,𝑁   𝑧,𝑃
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑆(𝑧,𝑓,𝑖)   𝐻(𝑒,𝑓,𝑑)   (𝑧,𝑏)   𝐾(𝑒,𝑓,𝑑)   (𝑓,𝑑)   (𝑧,𝑏)   𝑁(𝑒,𝑑)   𝑋(𝑧,𝑒,𝑓,𝑖,𝑗,𝑏,𝑑)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemk34
StepHypRef Expression
1 cdlemk3.x . 2 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))
2 fveq1 6343 . . . . . . . . 9 (𝑧 = (𝑏𝑌𝐺) → (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃))
3 simpll1 1252 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simplr1 1258 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → 𝑧𝑇)
5 simpl1 1225 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simpl3r 1286 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑅𝐹) = (𝑅𝑁))
7 simp22l 1374 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺𝑇)
87adantr 472 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺𝑇)
95, 6, 83jca 1122 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇))
109adantr 472 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇))
11 simp21l 1372 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹𝑇)
1211adantr 472 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐹𝑇)
13 simpr2 1233 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑏𝑇)
14 simpl23 1322 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑁𝑇)
1512, 13, 143jca 1122 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹𝑇𝑏𝑇𝑁𝑇))
1615adantr 472 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → (𝐹𝑇𝑏𝑇𝑁𝑇))
17 simpr32 1344 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐹))
18 simpr33 1346 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐺))
1917, 18jca 555 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))
2019adantr 472 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))
21 simp21r 1373 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹 ≠ ( I ↾ 𝐵))
2221adantr 472 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵))
23 simp22r 1375 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 ≠ ( I ↾ 𝐵))
2423adantr 472 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 ≠ ( I ↾ 𝐵))
25 simpr31 1342 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝑏 ≠ ( I ↾ 𝐵))
2622, 24, 253jca 1122 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)))
2726adantr 472 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)))
28 simpl3l 1284 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2928adantr 472 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
30 cdlemk3.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝐾)
31 cdlemk3.l . . . . . . . . . . . . 13 = (le‘𝐾)
32 cdlemk3.j . . . . . . . . . . . . 13 = (join‘𝐾)
33 cdlemk3.m . . . . . . . . . . . . 13 = (meet‘𝐾)
34 cdlemk3.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
35 cdlemk3.h . . . . . . . . . . . . 13 𝐻 = (LHyp‘𝐾)
36 cdlemk3.t . . . . . . . . . . . . 13 𝑇 = ((LTrn‘𝐾)‘𝑊)
37 cdlemk3.r . . . . . . . . . . . . 13 𝑅 = ((trL‘𝐾)‘𝑊)
38 cdlemk3.s . . . . . . . . . . . . 13 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
39 cdlemk3.u1 . . . . . . . . . . . . 13 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
4030, 31, 32, 33, 34, 35, 36, 37, 38, 39cdlemkuel-3 36680 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝑏𝑇𝑁𝑇) ∧ (((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑏𝑌𝐺) ∈ 𝑇)
4110, 16, 20, 27, 29, 40syl113anc 1485 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → (𝑏𝑌𝐺) ∈ 𝑇)
42 simpr 479 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃))
4331, 34, 35, 36cdlemd 35989 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑧𝑇 ∧ (𝑏𝑌𝐺) ∈ 𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → 𝑧 = (𝑏𝑌𝐺))
443, 4, 41, 29, 42, 43syl311anc 1487 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) ∧ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)) → 𝑧 = (𝑏𝑌𝐺))
4544ex 449 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃) → 𝑧 = (𝑏𝑌𝐺)))
462, 45impbid2 216 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑧 = (𝑏𝑌𝐺) ↔ (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃)))
47 simp1 1130 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 simp3r 1242 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐹) = (𝑅𝑁))
4947, 48jca 555 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)))
5049adantr 472 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)))
5122, 25, 243jca 1122 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
5230, 31, 32, 33, 34, 35, 36, 37, 38, 39cdlemk32 36679 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝑏𝑇𝑁𝑇) ∧ 𝐺𝑇) ∧ (((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑏𝑌𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))
5350, 15, 8, 19, 51, 28, 52syl123anc 1490 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑏𝑌𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))
5453eqeq2d 2762 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃) ↔ (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
5546, 54bitrd 268 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑧𝑇𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑧 = (𝑏𝑌𝐺) ↔ (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏))))))
56553exp2 1443 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇 → (𝑏𝑇 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧 = (𝑏𝑌𝐺) ↔ (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))))
5756imp31 447 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝑧𝑇) ∧ 𝑏𝑇) → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧 = (𝑏𝑌𝐺) ↔ (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
5857pm5.74d 262 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝑧𝑇) ∧ 𝑏𝑇) → (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)) ↔ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
5958ralbidva 3115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ 𝑧𝑇) → (∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)) ↔ ∀𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
6059riotabidva 6782 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺))) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
611, 60syl5eq 2798 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∀wral 3042   class class class wbr 4796   ↦ cmpt 4873   I cid 5165  ◡ccnv 5257   ↾ cres 5260   ∘ ccom 5262  ‘cfv 6041  ℩crio 6765  (class class class)co 6805   ↦ cmpt2 6807  Basecbs 16051  lecple 16142  joincjn 17137  meetcmee 17138  Atomscatm 35045  HLchlt 35132  LHypclh 35765  LTrncltrn 35882  trLctrl 35940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-riotaBAD 34734 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-undef 7560  df-map 8017  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35279  df-lplanes 35280  df-lvols 35281  df-lines 35282  df-psubsp 35284  df-pmap 35285  df-padd 35577  df-lhyp 35769  df-laut 35770  df-ldil 35885  df-ltrn 35886  df-trl 35941 This theorem is referenced by:  cdlemk35  36694
 Copyright terms: Public domain W3C validator