Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11u-2N Structured version   Visualization version   GIF version

Theorem cdlemk11u-2N 36691
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma2 (𝑍) case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
cdlemk2.v 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
cdlemk2.z 𝑍 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐶)) (𝑅‘(𝑋𝐶))))
Assertion
Ref Expression
cdlemk11u-2N (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑑   ,𝑑   𝐶,𝑑,𝑘   𝐺,𝑑,𝑘   𝑄,𝑑   𝑃,𝑑   𝑅,𝑑   𝑇,𝑑   𝑊,𝑑   ,𝑘   ,𝑘   ,𝑘   𝐴,𝑘   𝐶,𝑘   𝑘,𝐹   𝑘,𝐻   𝑘,𝐾   𝑘,𝑁   𝑄,𝑘   𝑃,𝑘   𝑅,𝑘   𝑇,𝑘   𝑘,𝑊   𝐹,𝑑   𝑋,𝑑,𝑘
Allowed substitution hints:   𝐴(𝑓,𝑑)   𝐵(𝑓,𝑖,𝑘,𝑑)   𝑄(𝑓,𝑖)   𝑆(𝑓,𝑖,𝑘,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑓,𝑑)   𝐾(𝑓,𝑑)   (𝑓,𝑑)   𝑁(𝑑)   𝑉(𝑓,𝑖,𝑘,𝑑)   𝑋(𝑓,𝑖)   𝑍(𝑓,𝑖,𝑘,𝑑)

Proof of Theorem cdlemk11u-2N
StepHypRef Expression
1 simp11 1244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐾 ∈ HL)
2 simp12 1245 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑊𝐻)
31, 2jca 495 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp211 1394 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹𝑇)
5 simp212 1395 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶𝑇)
6 simp213 1396 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑁𝑇)
7 simp22l 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺𝑇)
8 simp23l 1377 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑋𝑇)
96, 7, 83jca 1121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑁𝑇𝐺𝑇𝑋𝑇))
10 simp33 1252 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
11 simp13 1246 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑅𝐹) = (𝑅𝑁))
12 simp32l 1381 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐹 ≠ ( I ↾ 𝐵))
13 simp32r 1382 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐶 ≠ ( I ↾ 𝐵))
14 simp22r 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺 ≠ ( I ↾ 𝐵))
1512, 13, 143jca 1121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
16 simp23r 1378 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑋 ≠ ( I ↾ 𝐵))
17 simp31 1250 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)))
18 cdlemk2.b . . 3 𝐵 = (Base‘𝐾)
19 cdlemk2.l . . 3 = (le‘𝐾)
20 cdlemk2.j . . 3 = (join‘𝐾)
21 cdlemk2.m . . 3 = (meet‘𝐾)
22 cdlemk2.a . . 3 𝐴 = (Atoms‘𝐾)
23 cdlemk2.h . . 3 𝐻 = (LHyp‘𝐾)
24 cdlemk2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
25 cdlemk2.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
26 cdlemk2.s . . 3 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
27 cdlemk2.q . . 3 𝑄 = (𝑆𝐶)
28 cdlemk2.v . . 3 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
29 cdlemk2.z . . 3 𝑍 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐶)) (𝑅‘(𝑋𝐶))))
3018, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29cdlemk11u 36673 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐶𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)))) → ((𝑉𝐺)‘𝑃) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
313, 4, 5, 9, 10, 11, 15, 16, 17, 30syl333anc 1507 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐶𝑇𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋𝑇𝑋 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝑋) ≠ (𝑅𝐶)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑉𝐺)‘𝑃) (((𝑉𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942   class class class wbr 4784   ↦ cmpt 4861   I cid 5156  ◡ccnv 5248   ↾ cres 5251   ∘ ccom 5253  ‘cfv 6031  ℩crio 6752  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Atomscatm 35065  HLchlt 35152  LHypclh 35785  LTrncltrn 35902  trLctrl 35960 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-riotaBAD 34754 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-map 8010  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator