Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Structured version   Visualization version   GIF version

Theorem cdlemj3 36428
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐵 = (Base‘𝐾)
cdlemj.h 𝐻 = (LHyp‘𝐾)
cdlemj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemj.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemj.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemj3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))

Proof of Theorem cdlemj3
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1084 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2651 . . . 4 (le‘𝐾) = (le‘𝐾)
3 eqid 2651 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
4 cdlemj.h . . . 4 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 35614 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))
61, 5syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))
7 simpl1l 1132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
87adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝐾 ∈ HL)
9 simpl1r 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → 𝑊𝐻)
109adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑊𝐻)
11 simprl 809 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑢 ∈ (Atoms‘𝐾))
12 simprr1 1129 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑢(le‘𝐾)𝑊)
13 cdlemj.b . . . . 5 𝐵 = (Base‘𝐾)
14 cdlemj.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemj.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1613, 2, 3, 4, 14, 15cdlemfnid 36169 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))
178, 10, 11, 12, 16syl22anc 1367 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → ∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))
18 simp1l 1105 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)))
19 simp1r 1106 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → ≠ ( I ↾ 𝐵))
20 simp3l 1109 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔𝑇)
21 simp3rr 1155 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔 ≠ ( I ↾ 𝐵))
22 simp2r2 1184 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅𝐹))
2322necomd 2878 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) ≠ 𝑢)
24 simp3rl 1154 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝑔) = 𝑢)
2523, 24neeqtrrd 2897 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) ≠ (𝑅𝑔))
26 simp2r3 1185 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅))
2724, 26eqnetrd 2890 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝑔) ≠ (𝑅))
28 cdlemj.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
2913, 4, 14, 15, 28cdlemj2 36427 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅))) → (𝑈) = (𝑉))
3018, 19, 20, 21, 25, 27, 29syl132anc 1384 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑈) = (𝑉))
31303expia 1286 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → ((𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵))) → (𝑈) = (𝑉)))
3231expd 451 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (𝑔𝑇 → (((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))))
3332rexlimdv 3059 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉)))
3417, 33mpd 15 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (𝑈) = (𝑉))
356, 34rexlimddv 3064 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685   I cid 5052  cres 5145  cfv 5926  Basecbs 15904  lecple 15995  Atomscatm 34868  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  trLctrl 35763  TEndoctendo 36357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tendo 36360
This theorem is referenced by:  tendocan  36429
  Copyright terms: Public domain W3C validator