Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7fvbwN Structured version   Visualization version   GIF version

Theorem cdlemg7fvbwN 36397
Description: Properties of a translation of an element not under 𝑊. TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw 36292? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdlemg7fvbwN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))

Proof of Theorem cdlemg7fvbwN
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 cdlemg4.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemg4.l . . . 4 = (le‘𝐾)
3 eqid 2760 . . . 4 (join‘𝐾) = (join‘𝐾)
4 eqid 2760 . . . 4 (meet‘𝐾) = (meet‘𝐾)
5 cdlemg4.a . . . 4 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . 4 𝐻 = (LHyp‘𝐾)
71, 2, 3, 4, 5, 6lhpmcvr2 35813 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
873adant3 1127 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
9 simp11 1246 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simp2 1132 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑟𝐴)
11 simp3l 1244 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ 𝑟 𝑊)
1210, 11jca 555 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
13 simp12 1247 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
14 simp13 1248 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐹𝑇)
15 simp3r 1245 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)
16 cdlemg4.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
176, 16, 2, 3, 5, 4, 1cdlemg2fv 36389 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
189, 12, 13, 14, 15, 17syl122anc 1486 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
19 simp11l 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐾 ∈ HL)
20 hllat 35153 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2119, 20syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
222, 5, 6, 16ltrnel 35928 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) → ((𝐹𝑟) ∈ 𝐴 ∧ ¬ (𝐹𝑟) 𝑊))
2322simpld 477 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) → (𝐹𝑟) ∈ 𝐴)
249, 14, 12, 23syl3anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑟) ∈ 𝐴)
251, 5atbase 35079 . . . . . . 7 ((𝐹𝑟) ∈ 𝐴 → (𝐹𝑟) ∈ 𝐵)
2624, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑟) ∈ 𝐵)
27 simp12l 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑋𝐵)
28 simp11r 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑊𝐻)
291, 6lhpbase 35787 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
3028, 29syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑊𝐵)
311, 4latmcl 17253 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(meet‘𝐾)𝑊) ∈ 𝐵)
3221, 27, 30, 31syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋(meet‘𝐾)𝑊) ∈ 𝐵)
331, 3latjcl 17252 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹𝑟) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑊) ∈ 𝐵) → ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∈ 𝐵)
3421, 26, 32, 33syl3anc 1477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∈ 𝐵)
3518, 34eqeltrd 2839 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑋) ∈ 𝐵)
3622simprd 482 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊)) → ¬ (𝐹𝑟) 𝑊)
379, 14, 12, 36syl3anc 1477 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ (𝐹𝑟) 𝑊)
381, 2, 3latlej1 17261 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝐹𝑟) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑊) ∈ 𝐵) → (𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
3921, 26, 32, 38syl3anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)))
401, 2lattr 17257 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((𝐹𝑟) ∈ 𝐵 ∧ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∈ 𝐵𝑊𝐵)) → (((𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∧ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊) → (𝐹𝑟) 𝑊))
4121, 26, 34, 30, 40syl13anc 1479 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((𝐹𝑟) ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) ∧ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊) → (𝐹𝑟) 𝑊))
4239, 41mpand 713 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊 → (𝐹𝑟) 𝑊))
4337, 42mtod 189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊)
4418breq1d 4814 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹𝑋) 𝑊 ↔ ((𝐹𝑟)(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) 𝑊))
4543, 44mtbird 314 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ¬ (𝐹𝑋) 𝑊)
4635, 45jca 555 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) ∧ 𝑟𝐴 ∧ (¬ 𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))
4746rexlimdv3a 3171 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → (∃𝑟𝐴𝑟 𝑊 ∧ (𝑟(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊)))
488, 47mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐹𝑇) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  meetcmee 17146  Latclat 17246  Atomscatm 35053  HLchlt 35140  LHypclh 35773  LTrncltrn 35890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-undef 7568  df-map 8025  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949
This theorem is referenced by:  cdlemg7fvN  36414
  Copyright terms: Public domain W3C validator