Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg6d Structured version   Visualization version   GIF version

Theorem cdlemg6d 36430
Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg6d (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 (𝐺𝑃))) → (𝐹‘(𝐺𝑄)) = 𝑄))
Distinct variable groups:   𝐴,𝑟   𝐹,𝑟   𝐺,𝑟   𝐻,𝑟   ,𝑟   𝐾,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑇,𝑟   𝑉,𝑟   𝑊,𝑟
Allowed substitution hint:   𝑅(𝑟)

Proof of Theorem cdlemg6d
StepHypRef Expression
1 simp1 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1249 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp31 1252 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐺𝑇)
4 cdlemg4.l . . . . . . 7 = (le‘𝐾)
5 cdlemg4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 cdlemg4.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 cdlemg4.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg4.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemg4.j . . . . . . 7 = (join‘𝐾)
10 cdlemg4b.v . . . . . . 7 𝑉 = (𝑅𝐺)
114, 5, 6, 7, 8, 9, 10cdlemg4b1 36418 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺𝑇) → (𝑃 𝑉) = (𝑃 (𝐺𝑃)))
121, 2, 3, 11syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑉) = (𝑃 (𝐺𝑃)))
1312breq2d 4817 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑟 (𝑃 𝑉) ↔ 𝑟 (𝑃 (𝐺𝑃))))
1413notbid 307 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (¬ 𝑟 (𝑃 𝑉) ↔ ¬ 𝑟 (𝑃 (𝐺𝑃))))
1514anbi2d 742 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉)) ↔ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 (𝐺𝑃)))))
164, 5, 6, 7, 8, 9, 10cdlemg6c 36429 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 𝑉)) → (𝐹‘(𝐺𝑄)) = 𝑄))
1715, 16sylbird 250 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ ¬ 𝑟 (𝑃 (𝐺𝑃))) → (𝐹‘(𝐺𝑄)) = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140   class class class wbr 4805  cfv 6050  (class class class)co 6815  lecple 16171  joincjn 17166  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  trLctrl 35967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-undef 7570  df-map 8028  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968
This theorem is referenced by:  cdlemg6e  36431
  Copyright terms: Public domain W3C validator