Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47 Structured version   Visualization version   GIF version

Theorem cdlemg47 36546
Description: Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b 𝐵 = (Base‘𝐾)
cdlemg46.h 𝐻 = (LHyp‘𝐾)
cdlemg46.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg46.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg47 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝐾   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝐵()   𝐺()

Proof of Theorem cdlemg47
StepHypRef Expression
1 simp11 1245 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1241 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝑇)
3 simp12 1246 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐹𝑇)
4 cdlemg46.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
5 cdlemg46.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 36529 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇𝐹𝑇) → (𝐹) ∈ 𝑇)
71, 2, 3, 6syl3anc 1476 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹) ∈ 𝑇)
8 simp13 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → 𝐺𝑇)
9 simp3 1132 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹)))
10 cdlemg46.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
11 cdlemg46.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
1210, 4, 5, 11cdlemg46 36545 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
131, 3, 2, 9, 12syl121anc 1481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐹))
14 simp2r 1242 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅𝐹) = (𝑅𝐺))
1513, 14neeqtrd 3012 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅‘(𝐹)) ≠ (𝑅𝐺))
164, 5, 11cdlemg44 36543 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹) ∈ 𝑇𝐺𝑇) ∧ (𝑅‘(𝐹)) ≠ (𝑅𝐺)) → ((𝐹) ∘ 𝐺) = (𝐺 ∘ (𝐹)))
171, 7, 8, 15, 16syl121anc 1481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = (𝐺 ∘ (𝐹)))
18 coass 5797 . . . . . 6 ((𝐺) ∘ 𝐹) = (𝐺 ∘ (𝐹))
1917, 18syl6eqr 2823 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = ((𝐺) ∘ 𝐹))
20 simp33 1253 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐹))
2120, 14neeqtrd 3012 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝑅) ≠ (𝑅𝐺))
224, 5, 11cdlemg44 36543 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐺𝑇) ∧ (𝑅) ≠ (𝑅𝐺)) → (𝐺) = (𝐺))
231, 2, 8, 21, 22syl121anc 1481 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺) = (𝐺))
2423coeq1d 5421 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐺) ∘ 𝐹) = ((𝐺) ∘ 𝐹))
2519, 24eqtr4d 2808 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ((𝐹) ∘ 𝐺) = ((𝐺) ∘ 𝐹))
26 coass 5797 . . . 4 ((𝐹) ∘ 𝐺) = ( ∘ (𝐹𝐺))
27 coass 5797 . . . 4 ((𝐺) ∘ 𝐹) = ( ∘ (𝐺𝐹))
2825, 26, 273eqtr3g 2828 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ (𝐹𝐺)) = ( ∘ (𝐺𝐹)))
2928coeq2d 5422 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = ( ∘ ( ∘ (𝐺𝐹))))
30 coass 5797 . . . 4 (() ∘ (𝐹𝐺)) = ( ∘ ( ∘ (𝐹𝐺)))
3110, 4, 5ltrn1o 35933 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇) → :𝐵1-1-onto𝐵)
321, 2, 31syl2anc 573 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → :𝐵1-1-onto𝐵)
33 f1ococnv1 6307 . . . . . 6 (:𝐵1-1-onto𝐵 → () = ( I ↾ 𝐵))
3432, 33syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → () = ( I ↾ 𝐵))
3534coeq1d 5421 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (() ∘ (𝐹𝐺)) = (( I ↾ 𝐵) ∘ (𝐹𝐺)))
3630, 35syl5eqr 2819 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = (( I ↾ 𝐵) ∘ (𝐹𝐺)))
374, 5ltrnco 36529 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
381, 3, 8, 37syl3anc 1476 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) ∈ 𝑇)
3910, 4, 5ltrn1o 35933 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝐹𝐺):𝐵1-1-onto𝐵)
401, 38, 39syl2anc 573 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺):𝐵1-1-onto𝐵)
41 f1of 6279 . . . 4 ((𝐹𝐺):𝐵1-1-onto𝐵 → (𝐹𝐺):𝐵𝐵)
42 fcoi2 6220 . . . 4 ((𝐹𝐺):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝐹𝐺)) = (𝐹𝐺))
4340, 41, 423syl 18 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (( I ↾ 𝐵) ∘ (𝐹𝐺)) = (𝐹𝐺))
4436, 43eqtrd 2805 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐹𝐺))) = (𝐹𝐺))
45 coass 5797 . . . 4 (() ∘ (𝐺𝐹)) = ( ∘ ( ∘ (𝐺𝐹)))
4634coeq1d 5421 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (() ∘ (𝐺𝐹)) = (( I ↾ 𝐵) ∘ (𝐺𝐹)))
4745, 46syl5eqr 2819 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐺𝐹))) = (( I ↾ 𝐵) ∘ (𝐺𝐹)))
484, 5ltrnco 36529 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
491, 8, 3, 48syl3anc 1476 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺𝐹) ∈ 𝑇)
5010, 4, 5ltrn1o 35933 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝐺𝐹):𝐵1-1-onto𝐵)
511, 49, 50syl2anc 573 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐺𝐹):𝐵1-1-onto𝐵)
52 f1of 6279 . . . 4 ((𝐺𝐹):𝐵1-1-onto𝐵 → (𝐺𝐹):𝐵𝐵)
53 fcoi2 6220 . . . 4 ((𝐺𝐹):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝐺𝐹)) = (𝐺𝐹))
5451, 52, 533syl 18 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (( I ↾ 𝐵) ∘ (𝐺𝐹)) = (𝐺𝐹))
5547, 54eqtrd 2805 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → ( ∘ ( ∘ (𝐺𝐹))) = (𝐺𝐹))
5629, 44, 553eqtr3d 2813 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑇 ∧ (𝑅𝐹) = (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ≠ ( I ↾ 𝐵) ∧ (𝑅) ≠ (𝑅𝐹))) → (𝐹𝐺) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   I cid 5157  ccnv 5249  cres 5252  ccom 5254  wf 6026  1-1-ontowf1o 6029  cfv 6030  Basecbs 16064  HLchlt 35159  LHypclh 35793  LTrncltrn 35910  trLctrl 35968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-undef 7555  df-map 8015  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35307  df-lplanes 35308  df-lvols 35309  df-lines 35310  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-lhyp 35797  df-laut 35798  df-ldil 35913  df-ltrn 35914  df-trl 35969
This theorem is referenced by:  cdlemg48  36547
  Copyright terms: Public domain W3C validator