![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg40 | Structured version Visualization version GIF version |
Description: Eliminate 𝑃 ≠ 𝑄 conditions from cdlemg39 36423. TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
Ref | Expression |
---|---|
cdlemg35.l | ⊢ ≤ = (le‘𝐾) |
cdlemg35.j | ⊢ ∨ = (join‘𝐾) |
cdlemg35.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg35.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg35.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg35.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemg40 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑃 = 𝑄 → 𝑃 = 𝑄) | |
2 | fveq2 6304 | . . . . . 6 ⊢ (𝑃 = 𝑄 → (𝐺‘𝑃) = (𝐺‘𝑄)) | |
3 | 2 | fveq2d 6308 | . . . . 5 ⊢ (𝑃 = 𝑄 → (𝐹‘(𝐺‘𝑃)) = (𝐹‘(𝐺‘𝑄))) |
4 | 1, 3 | oveq12d 6783 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ (𝐹‘(𝐺‘𝑃))) = (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) |
5 | 4 | oveq1d 6780 | . . 3 ⊢ (𝑃 = 𝑄 → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
6 | 5 | adantl 473 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 = 𝑄) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
7 | simpl1 1204 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | simpl2 1206 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) | |
9 | simpl3l 1263 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 ≠ 𝑄) → 𝐹 ∈ 𝑇) | |
10 | simpl3r 1265 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 ≠ 𝑄) → 𝐺 ∈ 𝑇) | |
11 | simpr 479 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
12 | cdlemg35.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
13 | cdlemg35.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
14 | cdlemg35.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
15 | cdlemg35.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
16 | cdlemg35.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
17 | cdlemg35.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
18 | eqid 2724 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
19 | 12, 13, 14, 15, 16, 17, 18 | cdlemg39 36423 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
20 | 7, 8, 9, 10, 11, 19 | syl113anc 1451 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
21 | 6, 20 | pm2.61dane 2983 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 lecple 16071 joincjn 17066 meetcmee 17067 Atomscatm 34970 HLchlt 35057 LHypclh 35690 LTrncltrn 35807 trLctrl 35865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-riotaBAD 34659 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-undef 7519 df-map 7976 df-preset 17050 df-poset 17068 df-plt 17080 df-lub 17096 df-glb 17097 df-join 17098 df-meet 17099 df-p0 17161 df-p1 17162 df-lat 17168 df-clat 17230 df-oposet 34883 df-ol 34885 df-oml 34886 df-covers 34973 df-ats 34974 df-atl 35005 df-cvlat 35029 df-hlat 35058 df-llines 35204 df-lplanes 35205 df-lvols 35206 df-lines 35207 df-psubsp 35209 df-pmap 35210 df-padd 35502 df-lhyp 35694 df-laut 35695 df-ldil 35810 df-ltrn 35811 df-trl 35866 |
This theorem is referenced by: cdlemg41 36425 |
Copyright terms: Public domain | W3C validator |