Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2klem Structured version   Visualization version   GIF version

Theorem cdlemg2klem 36404
 Description: cdleme42keg 36295 with simpler hypotheses. TODO: FIX COMMENT. (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b 𝐵 = (Base‘𝐾)
cdlemg2.l = (le‘𝐾)
cdlemg2.j = (join‘𝐾)
cdlemg2.m = (meet‘𝐾)
cdlemg2.a 𝐴 = (Atoms‘𝐾)
cdlemg2.h 𝐻 = (LHyp‘𝐾)
cdlemg2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2ex.u 𝑈 = ((𝑝 𝑞) 𝑊)
cdlemg2ex.d 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
cdlemg2ex.e 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemg2ex.g 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemg2klem.v 𝑉 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdlemg2klem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑞,𝑝,𝐴   𝐹,𝑝,𝑞   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑇,𝑝,𝑞   𝑊,𝑝,𝑞,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑝,𝑞   𝑃,𝑝,𝑞   𝑄,𝑝,𝑞   𝐵,𝑝,𝑞   ,𝑝,𝑞   𝑉,𝑝,𝑞,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑡,𝑞,𝑝)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑈(𝑞,𝑝)   𝐸(𝑡,𝑠,𝑞,𝑝)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑠,𝑞,𝑝)   𝑉(𝑦)

Proof of Theorem cdlemg2klem
StepHypRef Expression
1 cdlemg2.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemg2.l . . 3 = (le‘𝐾)
3 cdlemg2.j . . 3 = (join‘𝐾)
4 cdlemg2.m . . 3 = (meet‘𝐾)
5 cdlemg2.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemg2.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemg2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg2ex.u . . 3 𝑈 = ((𝑝 𝑞) 𝑊)
9 cdlemg2ex.d . . 3 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
10 cdlemg2ex.e . . 3 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
11 cdlemg2ex.g . . 3 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
12 fveq1 6353 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑃) = (𝐺𝑃))
13 fveq1 6353 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑄) = (𝐺𝑄))
1412, 13oveq12d 6833 . . . 4 (𝐹 = 𝐺 → ((𝐹𝑃) (𝐹𝑄)) = ((𝐺𝑃) (𝐺𝑄)))
1512oveq1d 6830 . . . 4 (𝐹 = 𝐺 → ((𝐹𝑃) 𝑉) = ((𝐺𝑃) 𝑉))
1614, 15eqeq12d 2776 . . 3 (𝐹 = 𝐺 → (((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉) ↔ ((𝐺𝑃) (𝐺𝑄)) = ((𝐺𝑃) 𝑉)))
17 vex 3344 . . . . 5 𝑠 ∈ V
18 eqid 2761 . . . . . 6 ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊))) = ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊)))
199, 18cdleme31sc 36193 . . . . 5 (𝑠 ∈ V → 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊))))
2017, 19ax-mp 5 . . . 4 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊)))
21 eqid 2761 . . . 4 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸))
22 eqid 2761 . . . 4 if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) = if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷)
23 eqid 2761 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊))))
24 cdlemg2klem.v . . . 4 𝑉 = ((𝑃 𝑄) 𝑊)
251, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11, 24cdleme42keg 36295 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐺𝑃) (𝐺𝑄)) = ((𝐺𝑃) 𝑉))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 25cdlemg2ce 36401 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉))
27263com23 1121 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140   ≠ wne 2933  ∀wral 3051  Vcvv 3341  ⦋csb 3675  ifcif 4231   class class class wbr 4805   ↦ cmpt 4882  ‘cfv 6050  ℩crio 6775  (class class class)co 6815  Basecbs 16080  lecple 16171  joincjn 17166  meetcmee 17167  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LTrncltrn 35909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-undef 7570  df-map 8028  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968 This theorem is referenced by:  cdlemg2k  36410
 Copyright terms: Public domain W3C validator