Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27b Structured version   Visualization version   GIF version

Theorem cdlemg27b 36301
 Description: TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg27b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑄 𝑧))

Proof of Theorem cdlemg27b
StepHypRef Expression
1 simp11 1111 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1112 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1113 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp22 1115 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
5 simp23l 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
6 simp31 1117 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
7 cdlemg12.l . . . . . 6 = (le‘𝐾)
8 cdlemg12.j . . . . . 6 = (join‘𝐾)
9 cdlemg12.m . . . . . 6 = (meet‘𝐾)
10 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
14 cdlemg31.n . . . . . 6 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
157, 8, 9, 10, 11, 12, 13, 14cdlemg31b0a 36300 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹))) → (𝑁𝐴𝑁 = (0.‘𝐾)))
161, 2, 3, 4, 5, 6, 15syl132anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑁𝐴𝑁 = (0.‘𝐾)))
17 simp23r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝑁)
1817adantr 480 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → 𝑧𝑁)
19 simp11l 1192 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
2019adantr 480 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝐾 ∈ HL)
21 hlatl 34965 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
2220, 21syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝐾 ∈ AtLat)
23 simpl21 1159 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝑧𝐴)
24 simpr 476 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → 𝑁𝐴)
257, 10atcmp 34916 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑧𝐴𝑁𝐴) → (𝑧 𝑁𝑧 = 𝑁))
2622, 23, 24, 25syl3anc 1366 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → (𝑧 𝑁𝑧 = 𝑁))
2726necon3bbid 2860 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁𝐴) → (¬ 𝑧 𝑁𝑧𝑁))
2819adantr 480 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝐾 ∈ HL)
2928, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝐾 ∈ AtLat)
30 simpl21 1159 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑧𝐴)
31 eqid 2651 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
327, 31, 10atnle0 34914 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑧𝐴) → ¬ 𝑧 (0.‘𝐾))
3329, 30, 32syl2anc 694 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → ¬ 𝑧 (0.‘𝐾))
34 simpr 476 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑁 = (0.‘𝐾))
3534breq2d 4697 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → (𝑧 𝑁𝑧 (0.‘𝐾)))
3633, 35mtbird 314 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → ¬ 𝑧 𝑁)
3717adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → 𝑧𝑁)
3836, 372thd 255 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ 𝑁 = (0.‘𝐾)) → (¬ 𝑧 𝑁𝑧𝑁))
3927, 38jaodan 843 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → (¬ 𝑧 𝑁𝑧𝑁))
4018, 39mpbird 247 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) ∧ (𝑁𝐴𝑁 = (0.‘𝐾))) → ¬ 𝑧 𝑁)
4116, 40mpdan 703 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑧 𝑁)
42 simp32 1118 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 (𝑃 𝑣))
43 hllat 34968 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4419, 43syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
45 simp21 1114 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝐴)
46 eqid 2651 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
4746, 10atbase 34894 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
4845, 47syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 ∈ (Base‘𝐾))
49 simp12l 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
50 simp22l 1200 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
5146, 8, 10hlatjcl 34971 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
5219, 49, 50, 51syl3anc 1366 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ∈ (Base‘𝐾))
53 simp13l 1196 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑄𝐴)
54 simp33 1119 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
557, 10, 11, 12, 13trlat 35774 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
561, 2, 5, 54, 55syl112anc 1370 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
5746, 8, 10hlatjcl 34971 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
5819, 53, 56, 57syl3anc 1366 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
5946, 7, 9latlem12 17125 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹)))))
6044, 48, 52, 58, 59syl13anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹)))))
6114breq2i 4693 . . . . . 6 (𝑧 𝑁𝑧 ((𝑃 𝑣) (𝑄 (𝑅𝐹))))
6260, 61syl6bbr 278 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) ↔ 𝑧 𝑁))
6362biimpd 219 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑧 (𝑃 𝑣) ∧ 𝑧 (𝑄 (𝑅𝐹))) → 𝑧 𝑁))
6442, 63mpand 711 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑧 (𝑄 (𝑅𝐹)) → 𝑧 𝑁))
6541, 64mtod 189 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑧 (𝑄 (𝑅𝐹)))
667, 11, 12, 13trlle 35789 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
671, 5, 66syl2anc 694 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
68 simp13r 1197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ 𝑄 𝑊)
69 nbrne2 4705 . . . 4 (((𝑅𝐹) 𝑊 ∧ ¬ 𝑄 𝑊) → (𝑅𝐹) ≠ 𝑄)
7067, 68, 69syl2anc 694 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ 𝑄)
717, 8, 10hlatexch1 34999 . . 3 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑧𝐴𝑄𝐴) ∧ (𝑅𝐹) ≠ 𝑄) → ((𝑅𝐹) (𝑄 𝑧) → 𝑧 (𝑄 (𝑅𝐹))))
7219, 56, 45, 53, 70, 71syl131anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) (𝑄 𝑧) → 𝑧 (𝑄 (𝑅𝐹))))
7365, 72mtod 189 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑧𝐴 ∧ (𝑣𝐴𝑣 𝑊) ∧ (𝐹𝑇𝑧𝑁)) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑄 𝑧))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  0.cp0 17084  Latclat 17092  Atomscatm 34868  AtLatcal 34869  HLchlt 34955  LHypclh 35588  LTrncltrn 35705  trLctrl 35763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764 This theorem is referenced by:  cdlemg28b  36308
 Copyright terms: Public domain W3C validator