Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg14f Structured version   Visualization version   GIF version

Theorem cdlemg14f 36462
 Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg14f (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Proof of Theorem cdlemg14f
StepHypRef Expression
1 simp1 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp32 1252 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐺𝑇)
3 simp2l 1241 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simp2r 1242 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5 cdlemg12.l . . . 4 = (le‘𝐾)
6 cdlemg12.j . . . 4 = (join‘𝐾)
7 cdlemg12.m . . . 4 = (meet‘𝐾)
8 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
115, 6, 7, 8, 9, 10ltrnu 35929 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑄 (𝐺𝑄)) 𝑊))
121, 2, 3, 4, 11syl211anc 1482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑄 (𝐺𝑄)) 𝑊))
13 simp31 1251 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → 𝐹𝑇)
145, 8, 9, 10ltrnel 35947 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
151, 2, 3, 14syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
16 simp33 1253 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = 𝑃)
175, 8, 9, 10ltrnateq 35990 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
181, 13, 3, 15, 16, 17syl131anc 1489 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
1918oveq2d 6809 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 (𝐺𝑃)))
2019oveq1d 6808 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑃 (𝐺𝑃)) 𝑊))
215, 8, 9, 10ltrnel 35947 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊))
221, 2, 4, 21syl3anc 1476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊))
235, 8, 9, 10ltrnateq 35990 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑄)) = (𝐺𝑄))
241, 13, 3, 22, 16, 23syl131anc 1489 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝐹‘(𝐺𝑄)) = (𝐺𝑄))
2524oveq2d 6809 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → (𝑄 (𝐹‘(𝐺𝑄))) = (𝑄 (𝐺𝑄)))
2625oveq1d 6808 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊) = ((𝑄 (𝐺𝑄)) 𝑊))
2712, 20, 263eqtr4d 2815 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹𝑃) = 𝑃)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   class class class wbr 4786  ‘cfv 6031  (class class class)co 6793  lecple 16156  joincjn 17152  meetcmee 17153  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  trLctrl 35967 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968 This theorem is referenced by:  cdlemg15a  36464  cdlemg22  36496  cdlemg29  36514  cdlemg39  36525
 Copyright terms: Public domain W3C validator