Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg11b Structured version   Visualization version   GIF version

Theorem cdlemg11b 36444
Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg11b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))

Proof of Theorem cdlemg11b
StepHypRef Expression
1 simp33 1252 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
2 simpl1 1226 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl31 1325 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐺𝑇)
4 simpl2l 1281 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 cdlemg8.l . . . . . . 7 = (le‘𝐾)
6 cdlemg8.j . . . . . . 7 = (join‘𝐾)
7 cdlemg8.m . . . . . . 7 = (meet‘𝐾)
8 cdlemg8.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
9 cdlemg8.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 cdlemg8.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg10.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
125, 6, 7, 8, 9, 10, 11trlval2 35965 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
132, 3, 4, 12syl3anc 1475 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
14 eqid 2770 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
15 simpl1l 1277 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ HL)
16 hllat 35165 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1715, 16syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ Lat)
18 simp2ll 1305 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
1918adantr 466 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃𝐴)
2014, 8atbase 35091 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2119, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 ∈ (Base‘𝐾))
2214, 9, 10ltrncl 35926 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃 ∈ (Base‘𝐾)) → (𝐺𝑃) ∈ (Base‘𝐾))
232, 3, 21, 22syl3anc 1475 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ∈ (Base‘𝐾))
2414, 6latjcl 17258 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
2517, 21, 23, 24syl3anc 1475 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
26 simpl1r 1279 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊𝐻)
2714, 9lhpbase 35799 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2826, 27syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊 ∈ (Base‘𝐾))
2914, 7latmcl 17259 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
3017, 25, 28, 29syl3anc 1475 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
31 simpl2r 1283 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄𝐴)
3214, 8atbase 35091 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3331, 32syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄 ∈ (Base‘𝐾))
3414, 6latjcl 17258 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3517, 21, 33, 34syl3anc 1475 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3614, 5, 7latmle1 17283 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3717, 25, 28, 36syl3anc 1475 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3814, 5, 6latlej1 17267 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
3917, 21, 33, 38syl3anc 1475 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 (𝑃 𝑄))
4014, 9, 10ltrncl 35926 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
412, 3, 33, 40syl3anc 1475 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑄) ∈ (Base‘𝐾))
4214, 5, 6latlej1 17267 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
4317, 23, 41, 42syl3anc 1475 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
44 simpr 471 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)))
4543, 44breqtrrd 4812 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) (𝑃 𝑄))
4614, 5, 6latjle12 17269 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4717, 21, 23, 35, 46syl13anc 1477 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4839, 45, 47mpbi2and 683 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) (𝑃 𝑄))
4914, 5, 17, 30, 25, 35, 37, 48lattrd 17265 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 𝑄))
5013, 49eqbrtrd 4806 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) (𝑃 𝑄))
5150ex 397 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)) → (𝑅𝐺) (𝑃 𝑄)))
5251necon3bd 2956 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (¬ (𝑅𝐺) (𝑃 𝑄) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄))))
531, 52mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Latclat 17252  Atomscatm 35065  HLchlt 35152  LHypclh 35785  LTrncltrn 35902  trLctrl 35960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-poset 17153  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-lat 17253  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961
This theorem is referenced by:  cdlemg12b  36446
  Copyright terms: Public domain W3C validator