Proof of Theorem cdlemg10c
Step | Hyp | Ref
| Expression |
1 | | simp1 1131 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp3l 1244 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐹 ∈ 𝑇) |
3 | | cdlemg8.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
4 | | cdlemg8.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | cdlemg8.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | | cdlemg10.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
7 | 3, 4, 5, 6 | trlle 35974 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ≤ 𝑊) |
8 | 1, 2, 7 | syl2anc 696 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑅‘𝐹) ≤ 𝑊) |
9 | 8 | biantrud 529 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ↔ ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ (𝑅‘𝐹) ≤ 𝑊))) |
10 | | simp1l 1240 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ HL) |
11 | | hllat 35153 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
12 | 10, 11 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐾 ∈ Lat) |
13 | | eqid 2760 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
14 | 13, 4, 5, 6 | trlcl 35954 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
15 | 1, 2, 14 | syl2anc 696 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
16 | | simp3r 1245 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) |
17 | | simp2ll 1307 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑃 ∈ 𝐴) |
18 | | cdlemg8.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
19 | 3, 18, 4, 5 | ltrnat 35929 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐺‘𝑃) ∈ 𝐴) |
20 | 1, 16, 17, 19 | syl3anc 1477 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐺‘𝑃) ∈ 𝐴) |
21 | | simp2rl 1309 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑄 ∈ 𝐴) |
22 | 3, 18, 4, 5 | ltrnat 35929 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴) → (𝐺‘𝑄) ∈ 𝐴) |
23 | 1, 16, 21, 22 | syl3anc 1477 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝐺‘𝑄) ∈ 𝐴) |
24 | | cdlemg8.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
25 | 13, 24, 18 | hlatjcl 35156 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐺‘𝑃) ∈ 𝐴 ∧ (𝐺‘𝑄) ∈ 𝐴) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∈ (Base‘𝐾)) |
26 | 10, 20, 23, 25 | syl3anc 1477 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∈ (Base‘𝐾)) |
27 | | simp1r 1241 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑊 ∈ 𝐻) |
28 | 13, 4 | lhpbase 35787 |
. . . 4
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
29 | 27, 28 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → 𝑊 ∈ (Base‘𝐾)) |
30 | | cdlemg8.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
31 | 13, 3, 30 | latlem12 17279 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊))) |
32 | 12, 15, 26, 29, 31 | syl13anc 1479 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊))) |
33 | 13, 24, 18 | hlatjcl 35156 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
34 | 10, 17, 21, 33 | syl3anc 1477 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
35 | 13, 3, 30 | latlem12 17279 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝐹) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
36 | 12, 15, 34, 29, 35 | syl13anc 1479 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≤ 𝑊) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
37 | 8 | biantrud 529 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ↔ ((𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄) ∧ (𝑅‘𝐹) ≤ 𝑊))) |
38 | 3, 24, 30, 18, 4, 5 | cdlemg10b 36425 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐺 ∈ 𝑇) → (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
39 | 38 | 3adant3l 1194 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
40 | 39 | breq2d 4816 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) ↔ (𝑅‘𝐹) ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
41 | 36, 37, 40 | 3bitr4rd 301 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ (((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ∧ 𝑊) ↔ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |
42 | 9, 32, 41 | 3bitrd 294 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑅‘𝐹) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) ↔ (𝑅‘𝐹) ≤ (𝑃 ∨ 𝑄))) |