![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemftr2 | Structured version Visualization version GIF version |
Description: Special case of cdlemf 36322 showing existence of non-identity translation with trace different from any 2 given lattice elements. (Contributed by NM, 25-Jul-2013.) |
Ref | Expression |
---|---|
cdlemftr.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemftr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemftr.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemftr.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemftr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemftr.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemftr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | cdlemftr.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | cdlemftr.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdlemftr3 36324 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌))) |
6 | simpl 474 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → 𝑓 ≠ ( I ↾ 𝐵)) | |
7 | simpr1 1210 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑋) | |
8 | simpr2 1212 | . . . 4 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑅‘𝑓) ≠ 𝑌) | |
9 | 6, 7, 8 | 3jca 1403 | . . 3 ⊢ ((𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
10 | 9 | reximi 3137 | . 2 ⊢ (∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ ((𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌 ∧ (𝑅‘𝑓) ≠ 𝑌)) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
11 | 5, 10 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑓) ≠ 𝑋 ∧ (𝑅‘𝑓) ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∃wrex 3039 I cid 5161 ↾ cres 5256 ‘cfv 6037 Basecbs 16030 HLchlt 35109 LHypclh 35742 LTrncltrn 35859 trLctrl 35917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-riotaBAD 34711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-1st 7321 df-2nd 7322 df-undef 7556 df-map 8013 df-preset 17100 df-poset 17118 df-plt 17130 df-lub 17146 df-glb 17147 df-join 17148 df-meet 17149 df-p0 17211 df-p1 17212 df-lat 17218 df-clat 17280 df-oposet 34935 df-ol 34937 df-oml 34938 df-covers 35025 df-ats 35026 df-atl 35057 df-cvlat 35081 df-hlat 35110 df-llines 35256 df-lplanes 35257 df-lvols 35258 df-lines 35259 df-psubsp 35261 df-pmap 35262 df-padd 35554 df-lhyp 35746 df-laut 35747 df-ldil 35862 df-ltrn 35863 df-trl 35918 |
This theorem is referenced by: cdlemftr1 36326 cdlemk26b-3 36664 cdlemk29-3 36670 cdlemk38 36674 cdlemkid5 36694 cdlemkid 36695 cdlemk55b 36719 |
Copyright terms: Public domain | W3C validator |