![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemeiota | Structured version Visualization version GIF version |
Description: A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg1c.l | ⊢ ≤ = (le‘𝐾) |
cdlemg1c.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg1c.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg1c.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdlemeiota | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2762 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → (𝐹‘𝑃) = (𝐹‘𝑃)) | |
2 | simp3 1133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
3 | cdlemg1c.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
4 | cdlemg1c.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemg1c.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemg1c.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 3, 4, 5, 6 | ltrnel 35947 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
8 | 7 | 3com23 1121 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
9 | 3, 4, 5, 6 | cdleme 36369 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) |
10 | 8, 9 | syld3an3 1516 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) |
11 | fveq1 6353 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑃) = (𝐹‘𝑃)) | |
12 | 11 | eqeq1d 2763 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑃) = (𝐹‘𝑃) ↔ (𝐹‘𝑃) = (𝐹‘𝑃))) |
13 | 12 | riota2 6798 | . . . 4 ⊢ ((𝐹 ∈ 𝑇 ∧ ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) = 𝐹)) |
14 | 2, 10, 13 | syl2anc 696 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) = (𝐹‘𝑃) ↔ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) = 𝐹)) |
15 | 1, 14 | mpbid 222 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃)) = 𝐹) |
16 | 15 | eqcomd 2767 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) → 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = (𝐹‘𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ∃!wreu 3053 class class class wbr 4805 ‘cfv 6050 ℩crio 6775 lecple 16171 Atomscatm 35072 HLchlt 35159 LHypclh 35792 LTrncltrn 35909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-undef 7570 df-map 8028 df-preset 17150 df-poset 17168 df-plt 17180 df-lub 17196 df-glb 17197 df-join 17198 df-meet 17199 df-p0 17261 df-p1 17262 df-lat 17268 df-clat 17330 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 |
This theorem is referenced by: cdlemg1cN 36396 cdlemg1cex 36397 cdlemm10N 36928 |
Copyright terms: Public domain | W3C validator |