Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9 Structured version   Visualization version   GIF version

Theorem cdleme9 36061
 Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐶 and 𝐹 represent s1 and f(s) respectively. In their notation, we prove f(s) ∨ s1 = q ∨ s1. (Contributed by NM, 10-Jun-2012.)
Hypotheses
Ref Expression
cdleme9.l = (le‘𝐾)
cdleme9.j = (join‘𝐾)
cdleme9.m = (meet‘𝐾)
cdleme9.a 𝐴 = (Atoms‘𝐾)
cdleme9.h 𝐻 = (LHyp‘𝐾)
cdleme9.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme9.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme9.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹 𝐶) = (𝑄 𝐶))

Proof of Theorem cdleme9
StepHypRef Expression
1 cdleme9.l . . . 4 = (le‘𝐾)
2 cdleme9.j . . . 4 = (join‘𝐾)
3 cdleme9.m . . . 4 = (meet‘𝐾)
4 cdleme9.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdleme9.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdleme9.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme9.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme9.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 36039 . . 3 𝐹 = ((𝑆 𝑈) (𝑄 𝐶))
109oveq1i 6824 . 2 (𝐹 𝐶) = (((𝑆 𝑈) (𝑄 𝐶)) 𝐶)
11 simp1l 1240 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ HL)
12 simp1 1131 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simp21 1249 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
14 simp23l 1379 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
15 hllat 35171 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1611, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ Lat)
17 eqid 2760 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1817, 4atbase 35097 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1914, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆 ∈ (Base‘𝐾))
20 simp21l 1375 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝐴)
2117, 4atbase 35097 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
23 simp22 1250 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄𝐴)
2417, 4atbase 35097 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄 ∈ (Base‘𝐾))
26 simp3 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
2717, 1, 2latnlej1l 17290 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝑃)
2827necomd 2987 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑆)
2916, 19, 22, 25, 26, 28syl131anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝑆)
301, 2, 3, 4, 5, 8cdleme9a 36059 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑆𝐴𝑃𝑆)) → 𝐶𝐴)
3112, 13, 14, 29, 30syl112anc 1481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶𝐴)
321, 2, 3, 4, 5, 6, 17cdleme0aa 36018 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈 ∈ (Base‘𝐾))
3312, 20, 23, 32syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑈 ∈ (Base‘𝐾))
3417, 2latjcl 17272 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 𝑈) ∈ (Base‘𝐾))
3516, 19, 33, 34syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 𝑈) ∈ (Base‘𝐾))
3617, 2, 4hlatjcl 35174 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐶𝐴) → (𝑄 𝐶) ∈ (Base‘𝐾))
3711, 23, 31, 36syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 𝐶) ∈ (Base‘𝐾))
381, 2, 4hlatlej2 35183 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝐶𝐴) → 𝐶 (𝑄 𝐶))
3911, 23, 31, 38syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶 (𝑄 𝐶))
4017, 1, 2, 3, 4atmod4i1 35673 . . . 4 ((𝐾 ∈ HL ∧ (𝐶𝐴 ∧ (𝑆 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 𝐶) ∈ (Base‘𝐾)) ∧ 𝐶 (𝑄 𝐶)) → (((𝑆 𝑈) (𝑄 𝐶)) 𝐶) = (((𝑆 𝑈) 𝐶) (𝑄 𝐶)))
4111, 31, 35, 37, 39, 40syl131anc 1490 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (((𝑆 𝑈) (𝑄 𝐶)) 𝐶) = (((𝑆 𝑈) 𝐶) (𝑄 𝐶)))
4217, 2, 4hlatjcl 35174 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
4311, 20, 14, 42syl3anc 1477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑆) ∈ (Base‘𝐾))
44 simp1r 1241 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊𝐻)
4517, 5lhpbase 35805 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4644, 45syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊 ∈ (Base‘𝐾))
471, 2, 4hlatlej2 35183 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
4811, 20, 14, 47syl3anc 1477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆 (𝑃 𝑆))
4917, 1, 2, 3, 4atmod3i1 35671 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑆𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑆 (𝑃 𝑆)) → (𝑆 ((𝑃 𝑆) 𝑊)) = ((𝑃 𝑆) (𝑆 𝑊)))
5011, 14, 43, 46, 48, 49syl131anc 1490 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 ((𝑃 𝑆) 𝑊)) = ((𝑃 𝑆) (𝑆 𝑊)))
51 simp23r 1380 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 𝑊)
52 eqid 2760 . . . . . . . . . . 11 (1.‘𝐾) = (1.‘𝐾)
531, 2, 52, 4, 5lhpjat2 35828 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝑊) = (1.‘𝐾))
5412, 14, 51, 53syl12anc 1475 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 𝑊) = (1.‘𝐾))
5554oveq2d 6830 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) (𝑆 𝑊)) = ((𝑃 𝑆) (1.‘𝐾)))
56 hlol 35169 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
5711, 56syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ OL)
5817, 3, 52olm11 35035 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (1.‘𝐾)) = (𝑃 𝑆))
5957, 43, 58syl2anc 696 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) (1.‘𝐾)) = (𝑃 𝑆))
6050, 55, 593eqtrrd 2799 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑆) = (𝑆 ((𝑃 𝑆) 𝑊)))
618oveq2i 6825 . . . . . . 7 (𝑆 𝐶) = (𝑆 ((𝑃 𝑆) 𝑊))
6260, 61syl6reqr 2813 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑆 𝐶) = (𝑃 𝑆))
6362oveq1d 6829 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑆 𝐶) 𝑈) = ((𝑃 𝑆) 𝑈))
6417, 4atbase 35097 . . . . . . 7 (𝐶𝐴𝐶 ∈ (Base‘𝐾))
6531, 64syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶 ∈ (Base‘𝐾))
6617, 2latj32 17318 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾))) → ((𝑆 𝑈) 𝐶) = ((𝑆 𝐶) 𝑈))
6716, 19, 33, 65, 66syl13anc 1479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑆 𝑈) 𝐶) = ((𝑆 𝐶) 𝑈))
682, 4hlatj32 35179 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑄𝐴)) → ((𝑃 𝑆) 𝑄) = ((𝑃 𝑄) 𝑆))
6911, 20, 14, 23, 68syl13anc 1479 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) 𝑄) = ((𝑃 𝑄) 𝑆))
7017, 2latjcom 17280 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
7116, 25, 43, 70syl3anc 1477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
726oveq2i 6825 . . . . . . . . 9 (𝑃 𝑈) = (𝑃 ((𝑃 𝑄) 𝑊))
7317, 2, 4hlatjcl 35174 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
7411, 20, 23, 73syl3anc 1477 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
751, 2, 4hlatlej1 35182 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
7611, 20, 23, 75syl3anc 1477 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃 (𝑃 𝑄))
7717, 1, 2, 3, 4atmod3i1 35671 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑃 𝑊)))
7811, 20, 74, 46, 76, 77syl131anc 1490 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = ((𝑃 𝑄) (𝑃 𝑊)))
791, 2, 52, 4, 5lhpjat2 35828 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
8012, 13, 79syl2anc 696 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑊) = (1.‘𝐾))
8180oveq2d 6830 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑃 𝑊)) = ((𝑃 𝑄) (1.‘𝐾)))
8217, 3, 52olm11 35035 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
8357, 74, 82syl2anc 696 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (1.‘𝐾)) = (𝑃 𝑄))
8478, 81, 833eqtrd 2798 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 ((𝑃 𝑄) 𝑊)) = (𝑃 𝑄))
8572, 84syl5eq 2806 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑃 𝑈) = (𝑃 𝑄))
8685oveq1d 6829 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑈) 𝑆) = ((𝑃 𝑄) 𝑆))
8769, 71, 863eqtr4d 2804 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑈) 𝑆))
8817, 2latj32 17318 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑈) 𝑆) = ((𝑃 𝑆) 𝑈))
8916, 22, 33, 19, 88syl13anc 1479 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑈) 𝑆) = ((𝑃 𝑆) 𝑈))
9087, 89eqtrd 2794 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) = ((𝑃 𝑆) 𝑈))
9163, 67, 903eqtr4d 2804 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑆 𝑈) 𝐶) = (𝑄 (𝑃 𝑆)))
9291oveq1d 6829 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (((𝑆 𝑈) 𝐶) (𝑄 𝐶)) = ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)))
9317, 1, 3latmle1 17297 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
9416, 43, 46, 93syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
958, 94syl5eqbr 4839 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐶 (𝑃 𝑆))
9617, 1, 2latjlej2 17287 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 (𝑃 𝑆) → (𝑄 𝐶) (𝑄 (𝑃 𝑆))))
9716, 65, 43, 25, 96syl13anc 1479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐶 (𝑃 𝑆) → (𝑄 𝐶) (𝑄 (𝑃 𝑆))))
9895, 97mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 𝐶) (𝑄 (𝑃 𝑆)))
9917, 2latjcl 17272 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
10016, 25, 43, 99syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾))
10117, 1, 3latleeqm2 17301 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝐶) ∈ (Base‘𝐾) ∧ (𝑄 (𝑃 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 𝐶) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)) = (𝑄 𝐶)))
10216, 37, 100, 101syl3anc 1477 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑄 𝐶) (𝑄 (𝑃 𝑆)) ↔ ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)) = (𝑄 𝐶)))
10398, 102mpbid 222 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑄 (𝑃 𝑆)) (𝑄 𝐶)) = (𝑄 𝐶))
10441, 92, 1033eqtrd 2798 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (((𝑆 𝑈) (𝑄 𝐶)) 𝐶) = (𝑄 𝐶))
10510, 104syl5eq 2806 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹 𝐶) = (𝑄 𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  meetcmee 17166  1.cp1 17259  Latclat 17266  OLcol 34982  Atomscatm 35071  HLchlt 35158  LHypclh 35791 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-p1 17261  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795 This theorem is referenced by:  cdleme9tN  36065  cdleme17a  36094
 Copyright terms: Public domain W3C validator