Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme7ga Structured version   Visualization version   GIF version

Theorem cdleme7ga 35853
Description: Part of proof of Lemma E in [Crawley] p. 113. See cdleme7 35854. (Contributed by NM, 8-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l = (le‘𝐾)
cdleme4.j = (join‘𝐾)
cdleme4.m = (meet‘𝐾)
cdleme4.a 𝐴 = (Atoms‘𝐾)
cdleme4.h 𝐻 = (LHyp‘𝐾)
cdleme4.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme4.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme4.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme7ga ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝐴)

Proof of Theorem cdleme7ga
StepHypRef Expression
1 cdleme4.g . 2 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊)))
2 simp11l 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
3 simp12l 1194 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝐴)
4 simp13l 1196 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄𝐴)
5 eqid 2651 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
6 cdleme4.j . . . . 5 = (join‘𝐾)
7 cdleme4.a . . . . 5 𝐴 = (Atoms‘𝐾)
85, 6, 7hlatjcl 34971 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
92, 3, 4, 8syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
10 simp11 1111 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp12 1112 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 simp13 1113 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
13 simp2r 1108 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
14 simp31 1117 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑄)
15 simp33 1119 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
16 cdleme4.l . . . . . 6 = (le‘𝐾)
17 cdleme4.m . . . . . 6 = (meet‘𝐾)
18 cdleme4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
19 cdleme4.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
20 cdleme4.f . . . . . 6 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
2116, 6, 17, 7, 18, 19, 20cdleme3fa 35841 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
2210, 11, 12, 13, 14, 15, 21syl132anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
23 simp2l 1107 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
24 simp2rl 1150 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
25 simp32 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
26 eqid 2651 . . . . . 6 ((𝑅 𝑆) 𝑊) = ((𝑅 𝑆) 𝑊)
2716, 6, 17, 7, 18, 19, 20, 1, 26cdleme7b 35849 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
2810, 23, 24, 15, 25, 27syl113anc 1378 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ 𝐴)
295, 6, 7hlatjcl 34971 . . . 4 ((𝐾 ∈ HL ∧ 𝐹𝐴 ∧ ((𝑅 𝑆) 𝑊) ∈ 𝐴) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾))
302, 22, 28, 29syl3anc 1366 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾))
31 hllat 34968 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
322, 31syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
33 eqid 2651 . . . . 5 (Lines‘𝐾) = (Lines‘𝐾)
34 eqid 2651 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
356, 7, 33, 34linepmap 35379 . . . 4 (((𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ((pmap‘𝐾)‘(𝑃 𝑄)) ∈ (Lines‘𝐾))
3632, 3, 4, 14, 35syl31anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((pmap‘𝐾)‘(𝑃 𝑄)) ∈ (Lines‘𝐾))
37 simp2ll 1148 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
385, 6, 7hlatjcl 34971 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
392, 37, 24, 38syl3anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
40 simp11r 1193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊𝐻)
415, 18lhpbase 35602 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4240, 41syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
435, 16, 17latmle2 17124 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) 𝑊)
4432, 39, 42, 43syl3anc 1366 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) 𝑊)
4516, 6, 17, 7, 18, 19, 20cdleme3 35842 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐹 𝑊)
4610, 11, 12, 13, 14, 15, 45syl132anc 1384 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐹 𝑊)
47 nbrne2 4705 . . . . . 6 ((((𝑅 𝑆) 𝑊) 𝑊 ∧ ¬ 𝐹 𝑊) → ((𝑅 𝑆) 𝑊) ≠ 𝐹)
4847necomd 2878 . . . . 5 ((((𝑅 𝑆) 𝑊) 𝑊 ∧ ¬ 𝐹 𝑊) → 𝐹 ≠ ((𝑅 𝑆) 𝑊))
4944, 46, 48syl2anc 694 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹 ≠ ((𝑅 𝑆) 𝑊))
506, 7, 33, 34linepmap 35379 . . . 4 (((𝐾 ∈ Lat ∧ 𝐹𝐴 ∧ ((𝑅 𝑆) 𝑊) ∈ 𝐴) ∧ 𝐹 ≠ ((𝑅 𝑆) 𝑊)) → ((pmap‘𝐾)‘(𝐹 ((𝑅 𝑆) 𝑊))) ∈ (Lines‘𝐾))
5132, 22, 28, 49, 50syl31anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((pmap‘𝐾)‘(𝐹 ((𝑅 𝑆) 𝑊))) ∈ (Lines‘𝐾))
525, 7atbase 34894 . . . . . 6 (𝐹𝐴𝐹 ∈ (Base‘𝐾))
5322, 52syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹 ∈ (Base‘𝐾))
545, 17latmcl 17099 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))
5532, 39, 42, 54syl3anc 1366 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾))
565, 16, 6latlej2 17108 . . . . 5 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ ((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) (𝐹 ((𝑅 𝑆) 𝑊)))
5732, 53, 55, 56syl3anc 1366 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) (𝐹 ((𝑅 𝑆) 𝑊)))
5816, 6, 17, 7, 18, 19, 20, 1, 26cdleme7c 35850 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑈 ≠ ((𝑅 𝑆) 𝑊))
5910, 11, 4, 23, 13, 14, 25, 15, 58syl323anc 1396 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑈 ≠ ((𝑅 𝑆) 𝑊))
6059necomd 2878 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) ≠ 𝑈)
61 hlatl 34965 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
622, 61syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ AtLat)
6316, 6, 17, 7, 18, 19lhpat2 35649 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
6410, 11, 4, 14, 63syl112anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑈𝐴)
6516, 7atncmp 34917 . . . . . . 7 ((𝐾 ∈ AtLat ∧ ((𝑅 𝑆) 𝑊) ∈ 𝐴𝑈𝐴) → (¬ ((𝑅 𝑆) 𝑊) 𝑈 ↔ ((𝑅 𝑆) 𝑊) ≠ 𝑈))
6662, 28, 64, 65syl3anc 1366 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (¬ ((𝑅 𝑆) 𝑊) 𝑈 ↔ ((𝑅 𝑆) 𝑊) ≠ 𝑈))
6760, 66mpbird 247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ ((𝑅 𝑆) 𝑊) 𝑈)
685, 16, 17latlem12 17125 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (((𝑅 𝑆) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((((𝑅 𝑆) 𝑊) (𝑃 𝑄) ∧ ((𝑅 𝑆) 𝑊) 𝑊) ↔ ((𝑅 𝑆) 𝑊) ((𝑃 𝑄) 𝑊)))
6932, 55, 9, 42, 68syl13anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((((𝑅 𝑆) 𝑊) (𝑃 𝑄) ∧ ((𝑅 𝑆) 𝑊) 𝑊) ↔ ((𝑅 𝑆) 𝑊) ((𝑃 𝑄) 𝑊)))
7069biimpd 219 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((((𝑅 𝑆) 𝑊) (𝑃 𝑄) ∧ ((𝑅 𝑆) 𝑊) 𝑊) → ((𝑅 𝑆) 𝑊) ((𝑃 𝑄) 𝑊)))
7144, 70mpan2d 710 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑊) (𝑃 𝑄) → ((𝑅 𝑆) 𝑊) ((𝑃 𝑄) 𝑊)))
7219breq2i 4693 . . . . . 6 (((𝑅 𝑆) 𝑊) 𝑈 ↔ ((𝑅 𝑆) 𝑊) ((𝑃 𝑄) 𝑊))
7371, 72syl6ibr 242 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (((𝑅 𝑆) 𝑊) (𝑃 𝑄) → ((𝑅 𝑆) 𝑊) 𝑈))
7467, 73mtod 189 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ ((𝑅 𝑆) 𝑊) (𝑃 𝑄))
75 nbrne1 4704 . . . . 5 ((((𝑅 𝑆) 𝑊) (𝐹 ((𝑅 𝑆) 𝑊)) ∧ ¬ ((𝑅 𝑆) 𝑊) (𝑃 𝑄)) → (𝐹 ((𝑅 𝑆) 𝑊)) ≠ (𝑃 𝑄))
7675necomd 2878 . . . 4 ((((𝑅 𝑆) 𝑊) (𝐹 ((𝑅 𝑆) 𝑊)) ∧ ¬ ((𝑅 𝑆) 𝑊) (𝑃 𝑄)) → (𝑃 𝑄) ≠ (𝐹 ((𝑅 𝑆) 𝑊)))
7757, 74, 76syl2anc 694 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ≠ (𝐹 ((𝑅 𝑆) 𝑊)))
7816, 6, 17, 7, 18, 19, 20, 1, 26cdleme7e 35852 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺 ≠ (0.‘𝐾))
791, 78syl5eqner 2898 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) ≠ (0.‘𝐾))
80 eqid 2651 . . . 4 (0.‘𝐾) = (0.‘𝐾)
815, 17, 80, 7, 33, 342lnat 35388 . . 3 (((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 ((𝑅 𝑆) 𝑊)) ∈ (Base‘𝐾)) ∧ (((pmap‘𝐾)‘(𝑃 𝑄)) ∈ (Lines‘𝐾) ∧ ((pmap‘𝐾)‘(𝐹 ((𝑅 𝑆) 𝑊))) ∈ (Lines‘𝐾)) ∧ ((𝑃 𝑄) ≠ (𝐹 ((𝑅 𝑆) 𝑊)) ∧ ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) ≠ (0.‘𝐾))) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) ∈ 𝐴)
822, 9, 30, 36, 51, 77, 79, 81syl322anc 1394 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) (𝐹 ((𝑅 𝑆) 𝑊))) ∈ 𝐴)
831, 82syl5eqel 2734 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  0.cp0 17084  Latclat 17092  Atomscatm 34868  AtLatcal 34869  HLchlt 34955  Linesclines 35098  pmapcpmap 35101  LHypclh 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592
This theorem is referenced by:  cdleme7  35854  cdleme18c  35898  cdleme22f2  35952  cdlemefs32sn1aw  36019
  Copyright terms: Public domain W3C validator