Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme51finvN Structured version   Visualization version   GIF version

Theorem cdleme51finvN 36365
 Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemef51.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef51.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs51.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef51.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
Assertion
Ref Expression
cdleme51finvN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 = 𝐺)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧,   ,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   ,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐴,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑐,𝑠,𝑣,𝑥,𝑦,𝑧   𝐸,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧   𝐹,𝑎,𝑏,𝑐,𝑢,𝑣   𝐻,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐾,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑃,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑄,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑎,𝑏,𝑐,𝑠,𝑡,𝑣,𝑥,𝑦,𝑧   𝑊,𝑎,𝑏,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧   𝐺,𝑠,𝑡,𝑥,𝑦,𝑧   𝑁,𝑎,𝑏,𝑐,𝑡,𝑢,𝑥,𝑦,𝑧   𝑂,𝑎,𝑏,𝑐,𝑥,𝑦,𝑧   𝑉,𝑎,𝑏,𝑐,𝑡,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑢,𝑡)   𝑈(𝑢)   𝐸(𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑢,𝑡,𝑠)   𝑉(𝑠)

Proof of Theorem cdleme51finvN
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . . . 5 𝐵 = (Base‘𝐾)
2 cdlemef50.l . . . . 5 = (le‘𝐾)
3 cdlemef50.j . . . . 5 = (join‘𝐾)
4 cdlemef50.m . . . . 5 = (meet‘𝐾)
5 cdlemef50.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 cdlemef50.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemef50.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef50.d . . . . 5 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs50.e . . . . 5 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef50.f . . . . 5 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50f1o 36355 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
12 dff1o4 6308 . . . 4 (𝐹:𝐵1-1-onto𝐵 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐵))
1311, 12sylib 208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹 Fn 𝐵𝐹 Fn 𝐵))
1413simprd 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 Fn 𝐵)
15 cdlemef51.v . . . . 5 𝑉 = ((𝑄 𝑃) 𝑊)
16 cdlemef51.n . . . . 5 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
17 cdlemefs51.o . . . . 5 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
18 cdlemef51.g . . . . 5 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
191, 2, 3, 4, 5, 6, 15, 16, 17, 18cdleme50f1o 36355 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺:𝐵1-1-onto𝐵)
20193com23 1121 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺:𝐵1-1-onto𝐵)
21 f1ofn 6301 . . 3 (𝐺:𝐵1-1-onto𝐵𝐺 Fn 𝐵)
2220, 21syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺 Fn 𝐵)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18cdleme51finvfvN 36364 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑒𝐵) → (𝐹𝑒) = (𝐺𝑒))
2414, 22, 23eqfnfvd 6479 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 = 𝐺)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140   ≠ wne 2933  ∀wral 3051  ⦋csb 3675  ifcif 4231   class class class wbr 4805   ↦ cmpt 4882  ◡ccnv 5266   Fn wfn 6045  –1-1-onto→wf1o 6049  ‘cfv 6050  ℩crio 6775  (class class class)co 6815  Basecbs 16080  lecple 16171  joincjn 17166  meetcmee 17167  Atomscatm 35072  HLchlt 35159  LHypclh 35792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-undef 7570  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796 This theorem is referenced by:  cdleme51finvtrN  36367
 Copyright terms: Public domain W3C validator