Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50ltrn Structured version   Visualization version   GIF version

Theorem cdleme50ltrn 36359
 Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 is a lattice translation. TODO: fix comment. (Contributed by NM, 10-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdleme50ltrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleme50ltrn (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑡)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐸(𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme50ltrn
Dummy variables 𝑒 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemef50.l . . 3 = (le‘𝐾)
3 cdlemef50.j . . 3 = (join‘𝐾)
4 cdlemef50.m . . 3 = (meet‘𝐾)
5 cdlemef50.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemef50.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemef50.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef50.d . . 3 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef50.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
11 eqid 2770 . . 3 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme50ldil 36350 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
13 simp1 1129 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
14 simp2l 1240 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → 𝑑𝐴)
15 simp3l 1242 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → ¬ 𝑑 𝑊)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 36356 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴 ∧ ¬ 𝑑 𝑊)) → ((𝑑 (𝐹𝑑)) 𝑊) = 𝑈)
1713, 14, 15, 16syl12anc 1473 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → ((𝑑 (𝐹𝑑)) 𝑊) = 𝑈)
18 simp2r 1241 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → 𝑒𝐴)
19 simp3r 1243 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → ¬ 𝑒 𝑊)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50trn123 36356 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑒𝐴 ∧ ¬ 𝑒 𝑊)) → ((𝑒 (𝐹𝑒)) 𝑊) = 𝑈)
2113, 18, 19, 20syl12anc 1473 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → ((𝑒 (𝐹𝑒)) 𝑊) = 𝑈)
2217, 21eqtr4d 2807 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐴𝑒𝐴) ∧ (¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊)) → ((𝑑 (𝐹𝑑)) 𝑊) = ((𝑒 (𝐹𝑒)) 𝑊))
23223exp 1111 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑑𝐴𝑒𝐴) → ((¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊) → ((𝑑 (𝐹𝑑)) 𝑊) = ((𝑒 (𝐹𝑒)) 𝑊))))
2423ralrimivv 3118 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∀𝑑𝐴𝑒𝐴 ((¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊) → ((𝑑 (𝐹𝑑)) 𝑊) = ((𝑒 (𝐹𝑒)) 𝑊)))
25 cdleme50ltrn.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
262, 3, 4, 5, 6, 11, 25isltrn 35920 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑑𝐴𝑒𝐴 ((¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊) → ((𝑑 (𝐹𝑑)) 𝑊) = ((𝑒 (𝐹𝑒)) 𝑊)))))
27263ad2ant1 1126 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑑𝐴𝑒𝐴 ((¬ 𝑑 𝑊 ∧ ¬ 𝑒 𝑊) → ((𝑑 (𝐹𝑑)) 𝑊) = ((𝑒 (𝐹𝑒)) 𝑊)))))
2812, 24, 27mpbir2and 684 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ⦋csb 3680  ifcif 4223   class class class wbr 4784   ↦ cmpt 4861  ‘cfv 6031  ℩crio 6752  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Atomscatm 35065  HLchlt 35152  LHypclh 35785  LDilcldil 35901  LTrncltrn 35902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-riotaBAD 34754 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-map 8010  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906 This theorem is referenced by:  cdleme51finvtrN  36360  cdleme50ex  36361  cdlemg1a  36372  cdlemg1ltrnlem  36376
 Copyright terms: Public domain W3C validator