![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme50ldil | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. 𝐹 is a lattice dilation. TODO: fix comment. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
cdlemef50.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemef50.l | ⊢ ≤ = (le‘𝐾) |
cdlemef50.j | ⊢ ∨ = (join‘𝐾) |
cdlemef50.m | ⊢ ∧ = (meet‘𝐾) |
cdlemef50.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemef50.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemef50.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemef50.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs50.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemef50.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
cdleme50ldil.i | ⊢ 𝐶 = ((LDil‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
cdleme50ldil | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef50.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemef50.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemef50.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemef50.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemef50.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemef50.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemef50.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | cdlemef50.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
9 | cdlemefs50.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemef50.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
11 | eqid 2748 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cdleme50laut 36306 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ (LAut‘𝐾)) |
13 | simpr 479 | . . . . . . 7 ⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊) → ¬ 𝑒 ≤ 𝑊) | |
14 | 13 | con2i 134 | . . . . . 6 ⊢ (𝑒 ≤ 𝑊 → ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊)) |
15 | 10 | cdleme31fv2 36152 | . . . . . 6 ⊢ ((𝑒 ∈ 𝐵 ∧ ¬ (𝑃 ≠ 𝑄 ∧ ¬ 𝑒 ≤ 𝑊)) → (𝐹‘𝑒) = 𝑒) |
16 | 14, 15 | sylan2 492 | . . . . 5 ⊢ ((𝑒 ∈ 𝐵 ∧ 𝑒 ≤ 𝑊) → (𝐹‘𝑒) = 𝑒) |
17 | 16 | ex 449 | . . . 4 ⊢ (𝑒 ∈ 𝐵 → (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)) |
18 | 17 | rgen 3048 | . . 3 ⊢ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒) |
19 | 18 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)) |
20 | cdleme50ldil.i | . . . 4 ⊢ 𝐶 = ((LDil‘𝐾)‘𝑊) | |
21 | 1, 2, 6, 11, 20 | isldil 35868 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)))) |
22 | 21 | 3ad2ant1 1125 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹 ∈ 𝐶 ↔ (𝐹 ∈ (LAut‘𝐾) ∧ ∀𝑒 ∈ 𝐵 (𝑒 ≤ 𝑊 → (𝐹‘𝑒) = 𝑒)))) |
23 | 12, 19, 22 | mpbir2and 995 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∀wral 3038 ⦋csb 3662 ifcif 4218 class class class wbr 4792 ↦ cmpt 4869 ‘cfv 6037 ℩crio 6761 (class class class)co 6801 Basecbs 16030 lecple 16121 joincjn 17116 meetcmee 17117 Atomscatm 35022 HLchlt 35109 LHypclh 35742 LAutclaut 35743 LDilcldil 35858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-riotaBAD 34711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-1st 7321 df-2nd 7322 df-undef 7556 df-map 8013 df-preset 17100 df-poset 17118 df-plt 17130 df-lub 17146 df-glb 17147 df-join 17148 df-meet 17149 df-p0 17211 df-p1 17212 df-lat 17218 df-clat 17280 df-oposet 34935 df-ol 34937 df-oml 34938 df-covers 35025 df-ats 35026 df-atl 35057 df-cvlat 35081 df-hlat 35110 df-llines 35256 df-lplanes 35257 df-lvols 35258 df-lines 35259 df-psubsp 35261 df-pmap 35262 df-padd 35554 df-lhyp 35746 df-laut 35747 df-ldil 35862 |
This theorem is referenced by: cdleme50ltrn 36316 |
Copyright terms: Public domain | W3C validator |