Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42c Structured version   Visualization version   GIF version

Theorem cdleme42c 36281
Description: Part of proof of Lemma E in [Crawley] p. 113. Match ¬ 𝑥 𝑊. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
cdleme42.b 𝐵 = (Base‘𝐾)
cdleme42.l = (le‘𝐾)
cdleme42.j = (join‘𝐾)
cdleme42.m = (meet‘𝐾)
cdleme42.a 𝐴 = (Atoms‘𝐾)
cdleme42.h 𝐻 = (LHyp‘𝐾)
cdleme42.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme42c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ¬ (𝑅 𝑉) 𝑊)

Proof of Theorem cdleme42c
StepHypRef Expression
1 simp2r 1243 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ¬ 𝑅 𝑊)
2 simp1l 1240 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐾 ∈ HL)
3 hllat 35172 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝐾 ∈ Lat)
5 simp2l 1242 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑅𝐴)
6 cdleme42.b . . . . . 6 𝐵 = (Base‘𝐾)
7 cdleme42.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 35098 . . . . 5 (𝑅𝐴𝑅𝐵)
95, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑅𝐵)
10 cdleme42.v . . . . 5 𝑉 = ((𝑅 𝑆) 𝑊)
11 simp3l 1244 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑆𝐴)
12 cdleme42.j . . . . . . . 8 = (join‘𝐾)
136, 12, 7hlatjcl 35175 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ 𝐵)
142, 5, 11, 13syl3anc 1477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑅 𝑆) ∈ 𝐵)
15 simp1r 1241 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑊𝐻)
16 cdleme42.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
176, 16lhpbase 35806 . . . . . . 7 (𝑊𝐻𝑊𝐵)
1815, 17syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑊𝐵)
19 cdleme42.m . . . . . . 7 = (meet‘𝐾)
206, 19latmcl 17274 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ 𝐵𝑊𝐵) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
214, 14, 18, 20syl3anc 1477 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝑅 𝑆) 𝑊) ∈ 𝐵)
2210, 21syl5eqel 2844 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → 𝑉𝐵)
23 cdleme42.l . . . . 5 = (le‘𝐾)
246, 23, 12latjle12 17284 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅𝐵𝑉𝐵𝑊𝐵)) → ((𝑅 𝑊𝑉 𝑊) ↔ (𝑅 𝑉) 𝑊))
254, 9, 22, 18, 24syl13anc 1479 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝑅 𝑊𝑉 𝑊) ↔ (𝑅 𝑉) 𝑊))
26 simpl 474 . . 3 ((𝑅 𝑊𝑉 𝑊) → 𝑅 𝑊)
2725, 26syl6bir 244 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝑅 𝑉) 𝑊𝑅 𝑊))
281, 27mtod 189 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ¬ (𝑅 𝑉) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140   class class class wbr 4805  cfv 6050  (class class class)co 6815  Basecbs 16080  lecple 16171  joincjn 17166  meetcmee 17167  Latclat 17267  Atomscatm 35072  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-poset 17168  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-lat 17268  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-lhyp 35796
This theorem is referenced by:  cdleme42e  36288
  Copyright terms: Public domain W3C validator