Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme40m Structured version   Visualization version   GIF version

Theorem cdleme40m 36072
 Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on 𝑃 ∨ 𝑄 line. TODO: FIX COMMENT Use proof idea from cdleme32sn1awN 36037. (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
cdleme40.b 𝐵 = (Base‘𝐾)
cdleme40.l = (le‘𝐾)
cdleme40.j = (join‘𝐾)
cdleme40.m = (meet‘𝐾)
cdleme40.a 𝐴 = (Atoms‘𝐾)
cdleme40.h 𝐻 = (LHyp‘𝐾)
cdleme40.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme40.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme40.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme40.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme40.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme40a1.y 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
cdleme40a1.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
cdleme40.t 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
cdleme40.f 𝐹 = ((𝑃 𝑄) (𝑇 ((𝑆 𝑣) 𝑊)))
Assertion
Ref Expression
cdleme40m ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁𝐹)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑣,𝐻   𝑣,   𝑣,𝐾   𝑣,   𝑣,   𝑣,𝑃   𝑣,𝑄   𝑣,𝑅   𝑣,𝑈   𝑣,𝑊,𝑠,𝑡,𝑦   𝐴,𝑠   𝑦,𝑡,𝐴   𝐵,𝑠,𝑡,𝑦   𝐸,𝑠   𝑡,𝐹   𝑡,𝐻,𝑦   ,𝑠,𝑡,𝑦   𝑡,𝐾,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝑡,𝑆,𝑣,𝑦   𝑇,𝑠,𝑡,𝑦
Allowed substitution hints:   𝐶(𝑦,𝑣,𝑡,𝑠)   𝐷(𝑦,𝑣,𝑡,𝑠)   𝑆(𝑠)   𝑇(𝑣)   𝑈(𝑠)   𝐸(𝑦,𝑣,𝑡)   𝐹(𝑦,𝑣,𝑠)   𝐺(𝑦,𝑣,𝑡,𝑠)   𝐻(𝑠)   𝐼(𝑦,𝑣,𝑡,𝑠)   𝐾(𝑠)   𝑁(𝑦,𝑣,𝑡,𝑠)   𝑌(𝑣,𝑡,𝑠)

Proof of Theorem cdleme40m
StepHypRef Expression
1 simp22l 1200 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅𝐴)
2 simp3l1 1186 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 (𝑃 𝑄))
3 cdleme40.g . . . 4 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
4 cdleme40.i . . . 4 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
5 cdleme40.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
6 cdleme40a1.y . . . 4 𝑌 = ((𝑃 𝑄) (𝐸 ((𝑅 𝑡) 𝑊)))
7 cdleme40a1.c . . . 4 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
83, 4, 5, 6, 7cdleme31sn1c 35993 . . 3 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
91, 2, 8syl2anc 694 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁 = 𝐶)
10 cdleme40.b . . . 4 𝐵 = (Base‘𝐾)
11 fvex 6239 . . . 4 (Base‘𝐾) ∈ V
1210, 11eqeltri 2726 . . 3 𝐵 ∈ V
13 nfv 1883 . . . 4 𝑡(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄))))
14 nfra1 2970 . . . . . . . 8 𝑡𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)
15 nfcv 2793 . . . . . . . 8 𝑡𝐵
1614, 15nfriota 6660 . . . . . . 7 𝑡(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
177, 16nfcxfr 2791 . . . . . 6 𝑡𝐶
18 nfcv 2793 . . . . . 6 𝑡𝐹
1917, 18nfne 2923 . . . . 5 𝑡 𝐶𝐹
2019a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → Ⅎ𝑡 𝐶𝐹)
217a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
22 neeq1 2885 . . . . 5 (𝑌 = 𝐶 → (𝑌𝐹𝐶𝐹))
2322adantl 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ 𝑌 = 𝐶) → (𝑌𝐹𝐶𝐹))
24 simpl1 1084 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
25 simpl2 1085 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)))
26 simpl3l 1136 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆))
27 simprl 809 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑡𝐴)
28 simprrl 821 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑡 𝑊)
29 simprrr 822 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
3027, 28, 29jca31 556 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)))
31 simp3r1 1189 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑣𝐴)
32 simp3r2 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑣 𝑊)
33 simp3r3 1191 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑣 (𝑃 𝑄))
3431, 32, 33jca31 556 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ((𝑣𝐴 ∧ ¬ 𝑣 𝑊) ∧ ¬ 𝑣 (𝑃 𝑄)))
3534adantr 480 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ((𝑣𝐴 ∧ ¬ 𝑣 𝑊) ∧ ¬ 𝑣 (𝑃 𝑄)))
36 cdleme40.l . . . . . . 7 = (le‘𝐾)
37 cdleme40.j . . . . . . 7 = (join‘𝐾)
38 cdleme40.m . . . . . . 7 = (meet‘𝐾)
39 cdleme40.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
40 cdleme40.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
41 cdleme40.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
42 cdleme40.e . . . . . . 7 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
43 cdleme40.t . . . . . . 7 𝑇 = ((𝑣 𝑈) (𝑄 ((𝑃 𝑣) 𝑊)))
44 cdleme40.f . . . . . . 7 𝐹 = ((𝑃 𝑄) (𝑇 ((𝑆 𝑣) 𝑊)))
4536, 37, 38, 39, 40, 41, 42, 6, 43, 44cdleme39n 36071 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ ((𝑣𝐴 ∧ ¬ 𝑣 𝑊) ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑌𝐹)
4624, 25, 26, 30, 35, 45syl113anc 1378 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑌𝐹)
4746ex 449 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ((𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝑌𝐹))
48 simp1 1081 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
49 simp22r 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ¬ 𝑅 𝑊)
50 simp21 1114 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑃𝑄)
5110, 36, 37, 38, 39, 40, 41, 42, 6, 7cdleme25cl 35962 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → 𝐶𝐵)
5248, 1, 49, 50, 2, 51syl122anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝐶𝐵)
53 simp11 1111 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simp12 1112 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
55 simp13 1113 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5636, 37, 39, 40cdlemb2 35645 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑡𝐴𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))
5753, 54, 55, 50, 56syl121anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → ∃𝑡𝐴𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))
5813, 20, 21, 23, 47, 52, 57riotasv3d 34564 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) ∧ 𝐵 ∈ V) → 𝐶𝐹)
5912, 58mpan2 707 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝐶𝐹)
609, 59eqnetrd 2890 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ((𝑅 (𝑃 𝑄) ∧ 𝑆 (𝑃 𝑄) ∧ 𝑅𝑆) ∧ (𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑃 𝑄)))) → 𝑅 / 𝑠𝑁𝐹)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  Vcvv 3231  ⦋csb 3566  ifcif 4119   class class class wbr 4685  ‘cfv 5926  ℩crio 6650  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  Atomscatm 34868  HLchlt 34955  LHypclh 35588 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-riotaBAD 34557 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-undef 7444  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592 This theorem is referenced by:  cdleme40n  36073
 Copyright terms: Public domain W3C validator