Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31se Structured version   Visualization version   GIF version

Theorem cdleme31se 36190
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31se.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑇) 𝑊)))
cdleme31se.y 𝑌 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme31se (𝑅𝐴𝑅 / 𝑠𝐸 = 𝑌)
Distinct variable groups:   𝐴,𝑠   𝐷,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝑇,𝑠
Allowed substitution hints:   𝐸(𝑠)   𝑌(𝑠)

Proof of Theorem cdleme31se
StepHypRef Expression
1 nfcvd 2903 . . 3 (𝑅𝐴𝑠((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))))
2 oveq1 6821 . . . . . 6 (𝑠 = 𝑅 → (𝑠 𝑇) = (𝑅 𝑇))
32oveq1d 6829 . . . . 5 (𝑠 = 𝑅 → ((𝑠 𝑇) 𝑊) = ((𝑅 𝑇) 𝑊))
43oveq2d 6830 . . . 4 (𝑠 = 𝑅 → (𝐷 ((𝑠 𝑇) 𝑊)) = (𝐷 ((𝑅 𝑇) 𝑊)))
54oveq2d 6830 . . 3 (𝑠 = 𝑅 → ((𝑃 𝑄) (𝐷 ((𝑠 𝑇) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))))
61, 5csbiegf 3698 . 2 (𝑅𝐴𝑅 / 𝑠((𝑃 𝑄) (𝐷 ((𝑠 𝑇) 𝑊))) = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊))))
7 cdleme31se.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑇) 𝑊)))
87csbeq2i 4136 . 2 𝑅 / 𝑠𝐸 = 𝑅 / 𝑠((𝑃 𝑄) (𝐷 ((𝑠 𝑇) 𝑊)))
9 cdleme31se.y . 2 𝑌 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑇) 𝑊)))
106, 8, 93eqtr4g 2819 1 (𝑅𝐴𝑅 / 𝑠𝐸 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  csb 3674  (class class class)co 6814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817
This theorem is referenced by:  cdleme31sde  36193  cdleme31sn1c  36196
  Copyright terms: Public domain W3C validator