![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sc | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.) |
Ref | Expression |
---|---|
cdleme31sc.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
cdleme31sc.x | ⊢ 𝑋 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31sc | ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐶 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2903 | . . 3 ⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) | |
2 | oveq1 6820 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝑠 ∨ 𝑈) = (𝑅 ∨ 𝑈)) | |
3 | oveq2 6821 | . . . . . 6 ⊢ (𝑠 = 𝑅 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑅)) | |
4 | 3 | oveq1d 6828 | . . . . 5 ⊢ (𝑠 = 𝑅 → ((𝑃 ∨ 𝑠) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
5 | 4 | oveq2d 6829 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
6 | 2, 5 | oveq12d 6831 | . . 3 ⊢ (𝑠 = 𝑅 → ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
7 | 1, 6 | csbiegf 3698 | . 2 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
8 | cdleme31sc.c | . . 3 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
9 | 8 | csbeq2i 4136 | . 2 ⊢ ⦋𝑅 / 𝑠⦌𝐶 = ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
10 | cdleme31sc.x | . 2 ⊢ 𝑋 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
11 | 7, 9, 10 | 3eqtr4g 2819 | 1 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐶 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⦋csb 3674 (class class class)co 6813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 |
This theorem is referenced by: cdleme31snd 36176 cdleme31sdnN 36177 cdlemefr44 36215 cdlemefr45e 36218 cdleme48fv 36289 cdleme46fvaw 36291 cdleme48bw 36292 cdleme46fsvlpq 36295 cdlemeg46fvcl 36296 cdlemeg49le 36301 cdlemeg46fjgN 36311 cdlemeg46rjgN 36312 cdlemeg46fjv 36313 cdleme48d 36325 cdlemeg49lebilem 36329 cdleme50eq 36331 cdleme50f 36332 cdlemg2jlemOLDN 36383 cdlemg2klem 36385 |
Copyright terms: Public domain | W3C validator |