Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv2 Structured version   Visualization version   GIF version

Theorem cdleme31fv2 36202
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 23-Feb-2013.)
Hypothesis
Ref Expression
cdleme31fv2.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
Assertion
Ref Expression
cdleme31fv2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑃   𝑥,𝑄   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑂(𝑥)

Proof of Theorem cdleme31fv2
StepHypRef Expression
1 cdleme31fv2.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
21a1i 11 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥)))
3 breq1 4789 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 𝑊𝑋 𝑊))
43notbid 307 . . . . . . . 8 (𝑥 = 𝑋 → (¬ 𝑥 𝑊 ↔ ¬ 𝑋 𝑊))
54anbi2d 614 . . . . . . 7 (𝑥 = 𝑋 → ((𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
65notbid 307 . . . . . 6 (𝑥 = 𝑋 → (¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊) ↔ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)))
76biimparc 465 . . . . 5 ((¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
87adantll 693 . . . 4 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → ¬ (𝑃𝑄 ∧ ¬ 𝑥 𝑊))
98iffalsed 4236 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑥)
10 simpr 471 . . 3 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
119, 10eqtrd 2805 . 2 (((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) ∧ 𝑥 = 𝑋) → if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥) = 𝑋)
12 simpl 468 . 2 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
132, 11, 12, 12fvmptd 6430 1 ((𝑋𝐵 ∧ ¬ (𝑃𝑄 ∧ ¬ 𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  ifcif 4225   class class class wbr 4786  cmpt 4863  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039
This theorem is referenced by:  cdleme31id  36203  cdleme32fvcl  36249  cdleme32e  36254  cdleme32le  36256  cdleme48gfv  36346  cdleme50ldil  36357
  Copyright terms: Public domain W3C validator