![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31fv1 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31.o | ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) |
cdleme31.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) |
cdleme31.c | ⊢ 𝐶 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) |
Ref | Expression |
---|---|
cdleme31fv1 | ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme31.o | . . 3 ⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) | |
2 | cdleme31.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | |
3 | cdleme31.c | . . 3 ⊢ 𝐶 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑧 = (𝑁 ∨ (𝑋 ∧ 𝑊)))) | |
4 | 1, 2, 3 | cdleme31fv 36199 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝐹‘𝑋) = if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋)) |
5 | iftrue 4231 | . 2 ⊢ ((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊) → if((𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊), 𝐶, 𝑋) = 𝐶) | |
6 | 4, 5 | sylan9eq 2825 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ifcif 4225 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 ℩crio 6753 (class class class)co 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-riota 6754 df-ov 6796 |
This theorem is referenced by: cdleme31fv1s 36201 cdleme32fvcl 36249 cdleme32a 36250 cdleme42b 36287 |
Copyright terms: Public domain | W3C validator |