Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28b Structured version   Visualization version   GIF version

Theorem cdleme28b 36161
 Description: Lemma for cdleme25b 36144. TODO: FIX COMMENT. (Contributed by NM, 6-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme28b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊)))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑊,𝑠,𝑡,𝑢,𝑧   𝑋,𝑠,𝑧,𝑡
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑋(𝑢)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme28b
StepHypRef Expression
1 cdleme26.b . 2 𝐵 = (Base‘𝐾)
2 cdleme26.l . 2 = (le‘𝐾)
3 simp11l 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ HL)
4 hllat 35153 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
53, 4syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐾 ∈ Lat)
6 simp11r 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐻)
7 simp12 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
8 simp13 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
9 simp22 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
10 simp21 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑃𝑄)
11 cdleme26.j . . . . 5 = (join‘𝐾)
12 cdleme26.m . . . . 5 = (meet‘𝐾)
13 cdleme26.a . . . . 5 𝐴 = (Atoms‘𝐾)
14 cdleme26.h . . . . 5 𝐻 = (LHyp‘𝐾)
15 cdleme27.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
16 cdleme27.f . . . . 5 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
17 cdleme27.z . . . . 5 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
18 cdleme27.n . . . . 5 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
19 cdleme27.d . . . . 5 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
20 cdleme27.c . . . . 5 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
211, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme27cl 36156 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ 𝑃𝑄)) → 𝐶𝐵)
223, 6, 7, 8, 9, 10, 21syl222anc 1493 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝐶𝐵)
23 simp33l 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑋𝐵)
241, 14lhpbase 35787 . . . . 5 (𝑊𝐻𝑊𝐵)
256, 24syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑊𝐵)
261, 12latmcl 17253 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
275, 23, 25, 26syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋 𝑊) ∈ 𝐵)
281, 11latjcl 17252 . . 3 ((𝐾 ∈ Lat ∧ 𝐶𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝐶 (𝑋 𝑊)) ∈ 𝐵)
295, 22, 27, 28syl3anc 1477 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) ∈ 𝐵)
30 simp23 1251 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
31 cdleme27.g . . . . 5 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
32 cdleme27.o . . . . 5 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
33 cdleme27.e . . . . 5 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
34 cdleme27.y . . . . 5 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
351, 2, 11, 12, 13, 14, 15, 31, 17, 32, 33, 34cdleme27cl 36156 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ 𝑃𝑄)) → 𝑌𝐵)
363, 6, 7, 8, 30, 10, 35syl222anc 1493 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑌𝐵)
371, 11latjcl 17252 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
385, 36, 27, 37syl3anc 1477 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 (𝑋 𝑊)) ∈ 𝐵)
39 eqid 2760 . . 3 ((𝑠 𝑡) (𝑋 𝑊)) = ((𝑠 𝑡) (𝑋 𝑊))
401, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 31, 32, 33, 34, 39cdleme28a 36160 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) (𝑌 (𝑋 𝑊)))
41 simp11 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
42 simp31 1252 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑠𝑡)
4342necomd 2987 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → 𝑡𝑠)
44 simp32 1253 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))
4544ancomd 466 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → ((𝑡 (𝑋 𝑊)) = 𝑋 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
46 simp33 1254 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
47 eqid 2760 . . . 4 ((𝑡 𝑠) (𝑋 𝑊)) = ((𝑡 𝑠) (𝑋 𝑊))
481, 2, 11, 12, 13, 14, 15, 31, 17, 32, 33, 34, 16, 18, 19, 20, 47cdleme28a 36160 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ (𝑡𝑠 ∧ ((𝑡 (𝑋 𝑊)) = 𝑋 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 (𝑋 𝑊)) (𝐶 (𝑋 𝑊)))
4941, 7, 8, 10, 30, 9, 43, 45, 46, 48syl333anc 1509 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝑌 (𝑋 𝑊)) (𝐶 (𝑋 𝑊)))
501, 2, 5, 29, 38, 40, 49latasymd 17258 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑠𝑡 ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ifcif 4230   class class class wbr 4804  ‘cfv 6049  ℩crio 6773  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  meetcmee 17146  Latclat 17246  Atomscatm 35053  HLchlt 35140  LHypclh 35773 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-riotaBAD 34742 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-undef 7568  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777 This theorem is referenced by:  cdleme28c  36162
 Copyright terms: Public domain W3C validator