Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme28 Structured version   Visualization version   GIF version

Theorem cdleme28 36182
Description: Quantified version of cdleme28c 36181. (Compare cdleme24 36161.) (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme28 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊))))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑊,𝑠,𝑡,𝑢,𝑧   𝑋,𝑠,𝑧,𝑡
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑋(𝑢)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme28
StepHypRef Expression
1 simp11 1246 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simp12 1247 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → 𝑃𝑄)
3 simp2l 1242 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → 𝑠𝐴)
4 simp3ll 1311 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑠 𝑊)
53, 4jca 555 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
6 simp2r 1243 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → 𝑡𝐴)
7 simp3rl 1313 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑡 𝑊)
86, 7jca 555 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
9 simp3lr 1312 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → (𝑠 (𝑋 𝑊)) = 𝑋)
10 simp3rr 1314 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → (𝑡 (𝑋 𝑊)) = 𝑋)
11 simp13 1248 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
12 cdleme26.b . . . . 5 𝐵 = (Base‘𝐾)
13 cdleme26.l . . . . 5 = (le‘𝐾)
14 cdleme26.j . . . . 5 = (join‘𝐾)
15 cdleme26.m . . . . 5 = (meet‘𝐾)
16 cdleme26.a . . . . 5 𝐴 = (Atoms‘𝐾)
17 cdleme26.h . . . . 5 𝐻 = (LHyp‘𝐾)
18 cdleme27.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
19 cdleme27.f . . . . 5 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
20 cdleme27.z . . . . 5 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
21 cdleme27.n . . . . 5 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
22 cdleme27.d . . . . 5 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
23 cdleme27.c . . . . 5 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
24 cdleme27.g . . . . 5 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
25 cdleme27.o . . . . 5 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
26 cdleme27.e . . . . 5 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
27 cdleme27.y . . . . 5 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
2812, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27cdleme28c 36181 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠 (𝑋 𝑊)) = 𝑋 ∧ (𝑡 (𝑋 𝑊)) = 𝑋 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊)))
291, 2, 5, 8, 9, 10, 11, 28syl133anc 1500 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑠𝐴𝑡𝐴) ∧ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋))) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊)))
30293exp 1113 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑠𝐴𝑡𝐴) → (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊)))))
3130ralrimivv 3109 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (𝑌 (𝑋 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933  wral 3051  ifcif 4231   class class class wbr 4805  cfv 6050  crio 6775  (class class class)co 6815  Basecbs 16080  lecple 16171  joincjn 17166  meetcmee 17167  Atomscatm 35072  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-undef 7570  df-preset 17150  df-poset 17168  df-plt 17180  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p0 17261  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796
This theorem is referenced by:  cdleme29b  36184
  Copyright terms: Public domain W3C validator