Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26eALTN Structured version   Visualization version   GIF version

Theorem cdleme26eALTN 36170
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26eALT.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26eALT.f 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
cdleme26eALT.g 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme26eALT.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
cdleme26eALT.o 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
cdleme26eALT.i 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme26eALT.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26eALTN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Distinct variable groups:   𝑦,𝑧,𝑢,𝐴   𝑦,𝐵,𝑧,𝑢   𝑦,𝐻,𝑧   𝑦, ,𝑧,𝑢   𝑦,𝐾,𝑧   𝑦, ,𝑧,𝑢   𝑦, ,𝑧,𝑢   𝑢,𝑁   𝑢,𝑂   𝑦,𝑃,𝑧,𝑢   𝑦,𝑄,𝑧,𝑢   𝑦,𝑆,𝑢   𝑧,𝑇,𝑢   𝑦,𝑈,𝑧,𝑢   𝑦,𝑊,𝑧,𝑢
Allowed substitution hints:   𝑆(𝑧)   𝑇(𝑦)   𝐸(𝑦,𝑧,𝑢)   𝐹(𝑦,𝑧,𝑢)   𝐺(𝑦,𝑧,𝑢)   𝐻(𝑢)   𝐼(𝑦,𝑧,𝑢)   𝐾(𝑢)   𝑁(𝑦,𝑧)   𝑂(𝑦,𝑧)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem cdleme26eALTN
StepHypRef Expression
1 simp11l 1368 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp11r 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑊𝐻)
3 simp231 1401 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp12 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp13 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp21 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑃𝑄)
7 simp221 1398 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆𝐴)
8 simp31 1251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)))
9 simp21 1248 . . . . 5 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑦𝐴)
1093ad2ant3 1129 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑦𝐴)
11 simp322 1408 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 𝑊)
12 simp31 1251 . . . . . 6 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑧𝐴)
13123ad2ant3 1129 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑧𝐴)
14 simp332 1411 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 𝑊)
1513, 14jca 501 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
1610, 11, 15jca31 504 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))
17 cdleme26.l . . . 4 = (le‘𝐾)
18 cdleme26.j . . . 4 = (join‘𝐾)
19 cdleme26.m . . . 4 = (meet‘𝐾)
20 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
21 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
22 cdleme26eALT.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
23 cdleme26eALT.f . . . 4 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
24 cdleme26eALT.g . . . 4 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
25 cdleme26eALT.n . . . 4 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
26 cdleme26eALT.o . . . 4 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
2717, 18, 19, 20, 21, 22, 23, 24, 25, 26cdleme22eALTN 36154 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑂 𝑉))
281, 2, 3, 4, 5, 6, 7, 8, 16, 27syl333anc 1508 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑁 (𝑂 𝑉))
29 simp11 1245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp222 1399 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑆 𝑊)
31 simp223 1400 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
32 cdleme26.b . . . . 5 𝐵 = (Base‘𝐾)
33 cdleme26eALT.i . . . . 5 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
3432, 17, 18, 19, 20, 21, 22, 23, 25, 33cdleme25cl 36166 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐼𝐵)
3529, 4, 5, 7, 30, 6, 31, 34syl322anc 1504 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼𝐵)
36 simp323 1409 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 (𝑃 𝑄))
37 fvex 6342 . . . . 5 (Base‘𝐾) ∈ V
3832, 37eqeltri 2846 . . . 4 𝐵 ∈ V
3938, 33riotasv 34767 . . 3 ((𝐼𝐵𝑦𝐴 ∧ (¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄))) → 𝐼 = 𝑁)
4035, 10, 11, 36, 39syl112anc 1480 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 = 𝑁)
41 simp232 1402 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑇 𝑊)
42 simp233 1403 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇 (𝑃 𝑄))
43 cdleme26eALT.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
4432, 17, 18, 19, 20, 21, 22, 24, 26, 43cdleme25cl 36166 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → 𝐸𝐵)
4529, 4, 5, 3, 41, 6, 42, 44syl322anc 1504 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸𝐵)
46 simp333 1412 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 (𝑃 𝑄))
4738, 43riotasv 34767 . . . 4 ((𝐸𝐵𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝐸 = 𝑂)
4845, 13, 14, 46, 47syl112anc 1480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸 = 𝑂)
4948oveq1d 6808 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐸 𝑉) = (𝑂 𝑉))
5028, 40, 493brtr4d 4818 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  Vcvv 3351   class class class wbr 4786  cfv 6031  crio 6753  (class class class)co 6793  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Atomscatm 35072  HLchlt 35159  LHypclh 35792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-undef 7551  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator