Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme25b Structured version   Visualization version   GIF version

Theorem cdleme25b 36156
 Description: Transform cdleme24 36154. TODO get rid of \$d's on 𝑈, 𝑁 (Contributed by NM, 1-Jan-2013.)
Hypotheses
Ref Expression
cdleme24.b 𝐵 = (Base‘𝐾)
cdleme24.l = (le‘𝐾)
cdleme24.j = (join‘𝐾)
cdleme24.m = (meet‘𝐾)
cdleme24.a 𝐴 = (Atoms‘𝐾)
cdleme24.h 𝐻 = (LHyp‘𝐾)
cdleme24.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme24.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme24.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑠) 𝑊)))
Assertion
Ref Expression
cdleme25b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ∃𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = 𝑁))
Distinct variable groups:   𝑢,𝑠,𝐴   𝐵,𝑠,𝑢   𝐻,𝑠   ,𝑠,𝑢   𝐾,𝑠   ,𝑠,𝑢   ,𝑠,𝑢   𝑃,𝑠,𝑢   𝑄,𝑠,𝑢   𝑅,𝑠,𝑢   𝑊,𝑠,𝑢   𝑢,𝑁   𝑈,𝑠,𝑢
Allowed substitution hints:   𝐹(𝑢,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑠)

Proof of Theorem cdleme25b
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cdleme24.b . . 3 𝐵 = (Base‘𝐾)
2 cdleme24.l . . 3 = (le‘𝐾)
3 cdleme24.j . . 3 = (join‘𝐾)
4 cdleme24.m . . 3 = (meet‘𝐾)
5 cdleme24.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdleme24.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdleme24.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdleme24.f . . 3 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
9 cdleme24.n . . 3 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑅 𝑠) 𝑊)))
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme25a 36155 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ 𝑁𝐵))
11 eqid 2770 . . 3 ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
12 eqid 2770 . . 3 ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊))) = ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12cdleme24 36154 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝑁 = ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊)))))
14 breq1 4787 . . . . . 6 (𝑠 = 𝑡 → (𝑠 𝑊𝑡 𝑊))
1514notbid 307 . . . . 5 (𝑠 = 𝑡 → (¬ 𝑠 𝑊 ↔ ¬ 𝑡 𝑊))
16 breq1 4787 . . . . . 6 (𝑠 = 𝑡 → (𝑠 (𝑃 𝑄) ↔ 𝑡 (𝑃 𝑄)))
1716notbid 307 . . . . 5 (𝑠 = 𝑡 → (¬ 𝑠 (𝑃 𝑄) ↔ ¬ 𝑡 (𝑃 𝑄)))
1815, 17anbi12d 608 . . . 4 (𝑠 = 𝑡 → ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ↔ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))))
19 oveq1 6799 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠 𝑈) = (𝑡 𝑈))
20 oveq2 6800 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑃 𝑠) = (𝑃 𝑡))
2120oveq1d 6807 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑡) 𝑊))
2221oveq2d 6808 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑡) 𝑊)))
2319, 22oveq12d 6810 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
248, 23syl5eq 2816 . . . . . . 7 (𝑠 = 𝑡𝐹 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
25 oveq2 6800 . . . . . . . 8 (𝑠 = 𝑡 → (𝑅 𝑠) = (𝑅 𝑡))
2625oveq1d 6807 . . . . . . 7 (𝑠 = 𝑡 → ((𝑅 𝑠) 𝑊) = ((𝑅 𝑡) 𝑊))
2724, 26oveq12d 6810 . . . . . 6 (𝑠 = 𝑡 → (𝐹 ((𝑅 𝑠) 𝑊)) = (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊)))
2827oveq2d 6808 . . . . 5 (𝑠 = 𝑡 → ((𝑃 𝑄) (𝐹 ((𝑅 𝑠) 𝑊))) = ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊))))
299, 28syl5eq 2816 . . . 4 (𝑠 = 𝑡𝑁 = ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊))))
3018, 29reusv3 5004 . . 3 (∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ 𝑁𝐵) → (∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝑁 = ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊)))) ↔ ∃𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = 𝑁)))
3130biimpd 219 . 2 (∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ 𝑁𝐵) → (∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝑁 = ((𝑃 𝑄) (((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) ((𝑅 𝑡) 𝑊)))) → ∃𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = 𝑁)))
3210, 13, 31sylc 65 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ∃𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ∃wrex 3061   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Atomscatm 35065  HLchlt 35152  LHypclh 35785 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789 This theorem is referenced by:  cdleme25c  36157
 Copyright terms: Public domain W3C validator