Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20l Structured version   Visualization version   GIF version

Theorem cdleme20l 36112
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, penultimate line. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t) respectively. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme20.v 𝑉 = ((𝑆 𝑇) 𝑊)
Assertion
Ref Expression
cdleme20l ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) = ((𝑃 𝑄) (𝐹 𝐷)))

Proof of Theorem cdleme20l
StepHypRef Expression
1 cdleme19.l . . . 4 = (le‘𝐾)
2 cdleme19.j . . . 4 = (join‘𝐾)
3 cdleme19.m . . . 4 = (meet‘𝐾)
4 cdleme19.a . . . 4 𝐴 = (Atoms‘𝐾)
5 cdleme19.h . . . 4 𝐻 = (LHyp‘𝐾)
6 cdleme19.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme19.f . . . 4 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme19.g . . . 4 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
9 cdleme19.d . . . 4 𝐷 = ((𝑅 𝑆) 𝑊)
10 cdleme19.y . . . 4 𝑌 = ((𝑅 𝑇) 𝑊)
11 cdleme20.v . . . 4 𝑉 = ((𝑆 𝑇) 𝑊)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20i 36107 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) (𝑃 𝑄))
13 simp11l 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐾 ∈ HL)
14 simp11 1246 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp12 1247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
16 simp13 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
17 simp21l 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑅𝐴)
18 simp22l 1377 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑆𝐴)
19 simp22r 1378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑆 𝑊)
20 simp31l 1381 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑃𝑄)
21 simp321 1408 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑆 (𝑃 𝑄))
22 simp323 1410 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑅 (𝑃 𝑄))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20l1 36110 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝐷) ∈ (LLines‘𝐾))
2414, 15, 16, 17, 18, 19, 20, 21, 22, 23syl333anc 1509 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐹 𝐷) ∈ (LLines‘𝐾))
25 simp23l 1379 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑇𝐴)
26 simp23r 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑇 𝑊)
27 simp322 1409 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ¬ 𝑇 (𝑃 𝑄))
28 eqid 2760 . . . . . 6 ((𝑇 𝑆) 𝑊) = ((𝑇 𝑆) 𝑊)
291, 2, 3, 4, 5, 6, 8, 7, 10, 9, 28cdleme20l1 36110 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐺 𝑌) ∈ (LLines‘𝐾))
3014, 15, 16, 17, 25, 26, 20, 27, 22, 29syl333anc 1509 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐺 𝑌) ∈ (LLines‘𝐾))
31 simp12l 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑃𝐴)
32 simp13l 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑄𝐴)
33 eqid 2760 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
342, 4, 33llni2 35301 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
3513, 31, 32, 20, 34syl31anc 1480 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑃 𝑄) ∈ (LLines‘𝐾))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20l2 36111 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) ∈ 𝐴)
37 simp22 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
38 simp21 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
391, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdleme20k 36109 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝐹 𝐷) ≠ (𝑃 𝑄))
4014, 31, 32, 37, 38, 21, 22, 39syl322anc 1505 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐹 𝐷) ≠ (𝑃 𝑄))
411, 2, 3, 4, 33llnexchb2 35658 . . . 4 ((𝐾 ∈ HL ∧ ((𝐹 𝐷) ∈ (LLines‘𝐾) ∧ (𝐺 𝑌) ∈ (LLines‘𝐾) ∧ (𝑃 𝑄) ∈ (LLines‘𝐾)) ∧ (((𝐹 𝐷) (𝐺 𝑌)) ∈ 𝐴 ∧ (𝐹 𝐷) ≠ (𝑃 𝑄))) → (((𝐹 𝐷) (𝐺 𝑌)) (𝑃 𝑄) ↔ ((𝐹 𝐷) (𝐺 𝑌)) = ((𝐹 𝐷) (𝑃 𝑄))))
4213, 24, 30, 35, 36, 40, 41syl132anc 1495 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (((𝐹 𝐷) (𝐺 𝑌)) (𝑃 𝑄) ↔ ((𝐹 𝐷) (𝐺 𝑌)) = ((𝐹 𝐷) (𝑃 𝑄))))
4312, 42mpbid 222 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) = ((𝐹 𝐷) (𝑃 𝑄)))
44 hllat 35153 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4513, 44syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐾 ∈ Lat)
46 eqid 2760 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4746, 2, 4hlatjcl 35156 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4813, 31, 32, 47syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝑃 𝑄) ∈ (Base‘𝐾))
49 simp11r 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝑊𝐻)
501, 2, 3, 4, 5, 6, 7, 46cdleme1b 36016 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → 𝐹 ∈ (Base‘𝐾))
5113, 49, 31, 32, 18, 50syl23anc 1484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐹 ∈ (Base‘𝐾))
521, 2, 3, 4, 5, 9, 46cdlemedb 36087 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴)) → 𝐷 ∈ (Base‘𝐾))
5313, 49, 17, 18, 52syl22anc 1478 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → 𝐷 ∈ (Base‘𝐾))
5446, 2latjcl 17252 . . . 4 ((𝐾 ∈ Lat ∧ 𝐹 ∈ (Base‘𝐾) ∧ 𝐷 ∈ (Base‘𝐾)) → (𝐹 𝐷) ∈ (Base‘𝐾))
5545, 51, 53, 54syl3anc 1477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → (𝐹 𝐷) ∈ (Base‘𝐾))
5646, 3latmcom 17276 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝐹 𝐷) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝐹 𝐷)) = ((𝐹 𝐷) (𝑃 𝑄)))
5745, 48, 55, 56syl3anc 1477 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝑃 𝑄) (𝐹 𝐷)) = ((𝐹 𝐷) (𝑃 𝑄)))
5843, 57eqtr4d 2797 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ ((𝑃𝑄𝑆𝑇) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ (¬ 𝑅 (𝑆 𝑇) ∧ ¬ 𝑈 (𝑆 𝑇)))) → ((𝐹 𝐷) (𝐺 𝑌)) = ((𝑃 𝑄) (𝐹 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  meetcmee 17146  Latclat 17246  Atomscatm 35053  HLchlt 35140  LLinesclln 35280  LHypclh 35773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777
This theorem is referenced by:  cdleme20m  36113
  Copyright terms: Public domain W3C validator